

RELEASEABLE PROPRIETARY

MapLink Pro

Installation and Upgrade
AUM1117-1 |24 June 2024| Status: Approved

© Envitia Ltd. 2024
North Heath Lane, Horsham, West Sussex, RH12 5UX, United Kingdom

Tel: +44 1403 273 173 Email: info@envitia.com
www.envitia.com

Commercial in Confidence

 This document contains commercial company information.

 Communication to third parties without written consent from Envitia is forbidden.

 MapLink Pro Installation & Upgrade

RELEASEABLE PROPRIETARY

TABLE OF CONTENTS
1 INTRODUCTION .. 1

1.1 Supported Processors .. 1
1.2 Supported Windows Platforms ... 1
1.3 Training, Consultancy and Sub-Contracting .. 1
1.4 Glossary of Terms and Definitions ... 2

2 WINDOWS INSTALLATION .. 3

2.1 Installation from CD/Internet .. 3
2.2 Un-installing MapLink Pro ... 3
2.3 Upgrading Windows or Hard-drive .. 3

3 UPGRADING ON WINDOWS ... 4

3.1 Upgrading from a Previous MapLink Pro Version.. 4
3.2 Using Multiple MapLink Pro Versions .. 4
3.3 For Developers using Visual Studio 2015 .. 5
3.3.1 Visual Studio 2015 Project Wizards ... 5
3.4 For Developers using other Visual Studio Versions ... 5
3.4.1 Issues with Mixing Visual Studio Versions ... 5
3.4.1.1 Pseudo Debug .. 5
3.4.1.2 Memory De-allocation ... 6

4 INSTALLATION ON LINUX, EMBEDDED LINUX, ANDROID PLATFORMS ... 7

4.1 Installation from CD ... 7
4.2 Installation of TerrainSDK and Optional APIs .. 7
4.2.1 Additional Dependencies ... 7

5 UPGRADING ON LINUX, SOLARIS, EMBEDDED LINUX, VXWORKS PLATFORMS ... 9

5.1 Upgrading from a Previous MapLink Pro Version.. 9
5.2 Using Multiple MapLink Pro Versions .. 9

6 UPGRADING A C++/.NET APPLICATION .. 10

6.1 Breaking Changes for a Future Release ... 10
6.2 Breaking Changes for MapLink Pro 10.0 .. 10
6.2.1 Visual Studio Support .. 10
6.2.2 Supported Windows platforms ... 10
6.2.3 Core SDK (MapLink Pro main API) ... 10
6.2.3.1 GDAL/OGR ... 11
6.2.4 S-52 SDK ... 11
6.2.5 S-63 SDK ... 11
6.2.6 .NET Applications ... 11
6.2.7 .NET Framework Versions.. 11
6.2.8 MapLink Studio .. 12
6.2.9 LandLink DIGM Converter ... 12
6.2.10 ASRP Exporter and CADRG Exporter SDKs ... 12
6.3 Breaking Changes for MapLink Pro 8.0 .. 13
6.3.1 Compiler Setup .. 13
6.3.2 Unicode.. 13
6.3.3 Old File Formats ... 13
6.3.3.1 TSLVariant .. 13
6.3.3.2 Maps .. 13
6.3.4 Transverse Mercator Projection .. 13
6.3.4.1 TSLCoordinateSystem & tsltransforms.dat .. 14
6.3.4.2 TSLCoordinateConvertor ... 15
6.3.4.3 TSLMGRSGridDataLayer .. 15
6.3.4.4 TSLWMSDataLayer and TSMWMTSDataLayer .. 15
6.3.4.5 GML and WFS Client SDK ... 15

 MapLink Pro Installation & Upgrade

RELEASEABLE PROPRIETARY

6.3.5 TSLWMSDataLayer .. 15
6.3.6 TSLWMTSDataLayer... 15
6.3.7 Font Symbols ... 15
6.3.8 Definition of True & False .. 16
6.3.9 Editor SDK APP6A .. 16
6.3.10 .NET Applications ... 16
6.3.10.1 Font Symbols ... 16
6.3.11 MapLink Studio .. 17
6.3.12 MapLink Studio Automation .. 17
6.3.13 Unicode.. 18
6.3.13.1 Text/String Handling .. 18
6.3.13.2 C++ SDKs .. 18
6.3.13.3 .NET SDKs ... 19
6.3.13.4 Text .. 19
6.3.13.5 Fonts .. 19
6.3.13.6 Vertical Text Alignment ... 19
6.3.13.7 Right to Left Scripts ... 19
6.3.13.8 Vector Font .. 19
6.3.13.9 Windows .. 19
6.3.13.9.1 Non-Windows .. 20
6.3.13.9.2 Filenames and Paths .. 20
6.3.13.10 Filters ... 20
6.4 Upgrading application from MapLink Pro 7.1 or Older ... 21

7 DLL AND LIBRARY NAMING AND THEIR LOCATIONS ... 22

7.1 Windows .. 22
7.1.1 Directories ... Error! Bookmark not defined.
7.1.2 DLL Naming Convention .. 22
7.1.3 Library Naming Convention ... 22
7.2 Non Windows .. Error! Bookmark not defined.
7.2.1 Library Naming Convention ... Error! Bookmark not defined.

8 .NET SDKS .. 23

8.1 64-Bit Assemblies .. 23
8.2 .NET Framework Versions.. 23

9 64-BIT ISSUES ... 24

9.1 Supported Processors .. 24
9.2 API Types ... 24
9.3 Windows Stack Sizing .. 24

 Introduction

UUM1242-10 Approved Commercial in Confidence 1

RELEASEABLE PROPRIETARY

1 INTRODUCTION

This document contains information about installing and upgrading from a previous MapLink

Release.

This MapLink release is a major upgrade adding support for handling Unicode text natively. As

such there are a number of breaking changes that need to be addresses when upgrading an

application to this release. These changes have been kept as small as possible and are

addressed in this document.

There are a number of supporting documents that you may also wish to consult;

• MapLink Pro Quick Start Guide

• MapLink Pro 10.0 for Windows Release Notes

• MapLink Pro Developers Guide

• MapLink Pro Studio User Guide

• MapLink Pro API Help

• MapLink Pro Studio Help

• MapLink Pro: Deployment of End User Applications

1.1 Supported Processors

The following processors are supported:

• Intel® Pentium® 4 processor family and higher.

• Non Intel® processors compatible with the above processor.

Early AMD x64 bit processors which lack support for CMPXCHG16B are not supported as this

operation is required. These processors are the original "AMD Opteron Generation 1" (revision

E and earlier).

1.2 Supported Windows Platforms

MapLink Pro 10.0 is supported on the following Windows platforms:

• Windows 10

• Windows Server 2012 R2, no prerequisites.

• Windows 8.1, the update KB2919355 plus dependencies must be installed prior to

installing MapLink. This update is essentially Windows 8.1 Service Pack

(see https://support.microsoft.com/en-gb/kb/2919355). If this update is not present

the VCRedist installation will fail with various errors.

• Windows Server 2012, no prerequisites.

• Windows 8, no prerequisites.

• Windows 7, with Service Pack 1. KB2999226 will be installed if required.

The Visual Studio 2015 redist update 3 (version 14.0.24215) will be installed if needed.

MapLink Pro 11.1 only supports 64bit development.

1.3 Training, Consultancy and Sub-Contracting

Envitia provides a range of training options to help you get the best from MapLink Pro and

MapLink Studio. These courses greatly help to accelerate your development, produce

https://support.microsoft.com/en-gb/kb/2919355

 Introduction

UUM1242-10 Approved Commercial in Confidence 2

RELEASEABLE PROPRIETARY

optimised applications more quickly and to explore alternative ways of achieving your

objectives.

Dedicated consultancy can also be provided either on-site or remotely, allowing our

experienced developers to guide you towards the most appropriate approach to your

application arena. Customers frequently find this useful when adding additional new

functionality to their systems.

Envitia can also help accelerate your development by developing the MapLink component of

your application for you or by undertaking a more extensive part of your project for you.

Envitia has extensive experience of developing applications internally and for external

customers.

If you wish to discuss these opportunities, please contact Sales by email sales@envitia.com or

by phone: +44 1403 273173.

1.4 Glossary of Terms and Definitions

API Application Programming Interface

DBIF Database Interfaces

DMS Digital Mapping System

DPI Dots per Inch

DDO Dynamic Data Object

DO Display Object

EPSG European Petroleum Survey Group. This organisation defines a standardised

database of Coordinate Systems. These contain numeric codes associated with

coordinate system definitions http://www.epsg.org/

GML Geographic Markup Language http://www.opengeospatial.org/standards/gml

IDE Integrated Development Environment

JPEG JPEG raster format

MFC Microsoft Foundation Class

MDI Multiple Document Interface

STL C++ Standard Template Library

SDI Single Document Interface

SDK Software Developers Kit

TMF Envitia Map Format. Native geometry file format.

TIFF TIFF raster format

TMC The units that MapLink Pro uses to define a rectilinear coordinate space for

drawing Map data and Overlay data with.

mailto:sales@envitia.com
http://www.epsg.org/
http://www.opengeospatial.org/standards/gml

 Windows Installation

UUM1242-10 Approved Commercial in Confidence 3

RELEASEABLE PROPRIETARY

2 WINDOWS INSTALLATION

The following installation information relates exclusively to the release of MapLink Pro for

Windows.

MapLink Pro libraries are built using Visual Studio 2015 update 3 (see release notes for precise

version).

If you are using other development environments please refer to section 3.4.

2.1 Installation from CD/Internet

If you install MapLink Pro from a CD insert the CD in an appropriate drive and run one of the

MSI installers. When you have installed MapLink please also install any patches.

There are two installers available:

• MapLinkPro_10_0_B_x64.exe 64-bit MapLink Pro development. The default for

this installation will be the 64bit programs and

64bit Studio Automation.

Includes MapLink Studio.

• MapLinkStudio_10_0_B_x64.exe 64-bit MapLink Pro Studio.

Where:

 B is the Build Label Number.

Follow the on-screen instructions to install MapLink Pro.

Please run the Licence Administrator once the installation has completed. This ensures that the

licence keys are setup for the new installation correctly.

2.2 Un-installing MapLink Pro

To un-install MapLink Pro, use the "Program And Features"/"Add/Remove Programs" facility

accessible from your computer’s Control Panel. There is no need to revoke your licenses using

the Licence Administrator.

On Windows 10 the ‘Apps & features’ method of removal should be used.

2.3 Upgrading Windows or Hard-drive

If you are changing your version of Windows (E.G. upgrading from Windows XP to

Vista/Windows 7/Windows 8/Windows 10), then you must request a De-Authorisation Key for

MapLink Pro from Envitia before upgrading. On installing the newer version of windows, you

will then need to request a fresh Licence Key. This procedure also applies when you are re-

formatting or upgrading the hard-drive on which MapLink Pro is installed.

MapLink Pro will tolerate a certain amount of change to a PC before the license becomes

invalid. However when upgrading Windows version or replacing the hard-drive MapLink Pro is

installed upon, it is recommended that you uninstall and then re-install MapLink Pro.

If you do not have an active maintenance and support contract, a Licence Transfer Fee will

apply whenever you need a new key generated. This will occur even if the licence is not being

transferred to a different PC.

 Upgrading on Windows

UUM1242-10 Approved Commercial in Confidence 4

RELEASEABLE PROPRIETARY

3 UPGRADING ON WINDOWS

3.1 Upgrading from a Previous MapLink Pro Version

If upgrading from MapLink Pro 4.0 SP3 or later, this installation may safely be installed

alongside the old version if you wish. However you may wish to uninstall the old version

before installing this one, to save system resources. There is no need to revoke your licences

using the MapLink Licence Key Administrator; these licences will automatically be transferred

to the new installation. If you upgrade your machine to Vista or a newer Windows Operating

System then you should revoke your licenses and request new ones.

Versions of MapLink Pro prior to 4.0 SP3 placed DLLs in the Windows System32 directory. This

release does not – consequently, it is necessary to remove versions of MapLink Pro prior to 4.0

SP3 from the machine before installing this release. Use the Control Panel Add/Remove

Programs utility to remove previous installations. There is no need to revoke your licenses

using the Licence Administrator; these licenses will automatically be transferred to the new

installation.

3.2 Using Multiple MapLink Pro Versions

All installations of MapLink Pro since MapLink Pro 4.0 SP3 can happily co-exist on the same

machine without interfering with one another. It is quite common for developers to retain

installations of older versions of MapLink Pro to allow them to support their legacy applications

built against them.

There is one important point that must be understood in order to use any older version.

MapLink Pro libraries are located at runtime using the Windows ‘PATH’ environment variable

unless they are found in the current working directory. When MapLink Pro is installed on a

machine, an environment variable named ‘MAPL_PATH’ is added to the system and it contains

the location of the bin directory of the installation. The ‘MAPL_PATH’ environment variable is

then referenced from the ‘PATH’ environment variable.

Whichever version of MapLink Pro has been installed most recently will therefore take control

of the ‘MAPL_PATH’ environment variable. This means that when attempting to run an

application that requires the MapLink Pro runtime libraries from an older version of MapLink

Pro, it will load the latest version instead.

There are a couple of ways to avoid this problem:

• When wishing to use an older version of MapLink Pro, update the value of the

‘MAPL_PATH’ environment variable to point to the appropriate bin directory.

NOTE: Changing the environment variable will only affect applications that are started

after the change has been made, not ones that were opened before. If the application is

a system service, such as Microsoft's Internet Information Services (IIS), a reboot may

be required.

• Ensure that the working directory of the application is set to the appropriate version of

MapLink Pro’s bin directory. This may be achieved by copying the executable to the bin

directory, by setting the working directory in a short-cut, via an IDE or programmatically.

• It should be noted that this section refers specifically to MapLink Pro not a user deployed

application. For details on how to deploy your application please see the "MapLink Pro

Windows: Deployment of End User Applications" document.

 Upgrading on Windows

UUM1242-10 Approved Commercial in Confidence 5

RELEASEABLE PROPRIETARY

3.3 For Developers using Visual Studio 2015

All MapLink binaries are built using Microsoft Visual Studio 2015. So long as applications that

are built against MapLink Pro also use the same Visual Studio version, the use of debug

configurations is supported. When using a different version of Visual Studio, please refer to

section 3.44.

3.3.1 Visual Studio 2015 Project Wizards

The Wizards we normally ship for Visual Studio are not present in the initial release.

3.4 For Developers using other Visual Studio Versions

Some sample projects that ship with MapLink Pro are also provided in Visual Studio 2010 form.

In order to build the projects in other releases of Visual Studio, users will have to load the

Visual Studio 2010 project and allow it to be upgraded.

You will also need to link against the release mode libraries, even when you need to include

debug information in your application. This is a concept called Pseudo Debug (see section

3.4.1.1).

The Wizards for Visual Studio 2010 will not generate correct solutions.

3.4.1 Issues with Mixing Visual Studio Versions

Microsoft always modifies the Standard Template Library (STL) and the debug memory

manager between compiler releases. It is therefore important that care is taken when mixing

binaries built using different versions of Visual Studio.

This section describes the best ways to avoid issues that might arise from this practice. Please

note that this only applies when developing using C+++, rather than the MapLink .NET

interface.

3.4.1.1 Pseudo Debug

All MapLink samples and Visual Studio Wizards for older versions of Visual Studio use a debug

configuration called 'Pseudo Debug'.

The reason we have the concept of ‘Pseudo Debug’ is that the Microsoft Visual Studio licence

does not permit the redistribution of the debug libraries.

The 'Pseudo Debug' configuration gets around the licence restriction by using the release

libraries which can be distributed.

To manually convert a solution the steps to follow are:

• Rename the debug build configuration in both the solution and project to "Pseudo-

Debug". Obviously this is not strictly necessary, but it can be helpful.

• The runtime library setting should be changed to "Multi-Threaded DLL" from "Multi-

Threaded Debug DLL"

• The MapLink libraries that it is linked against should be changed to the release versions

(I.E. remove the "d" at the end)

• The "_DEBUG" pre-processor definition should be replaced with the "NDEBUG" one

Additionally the Qt samples build using the 'Pseudo Debug' concept to minimise the issue with

either obtaining or building Qt with Visual Studio 2015 Update 3.

 Upgrading on Windows

UUM1242-10 Approved Commercial in Confidence 6

RELEASEABLE PROPRIETARY

3.4.1.2 Memory De-allocation

The MapLink SDKs attempt to ensure that objects are allocated in the Visual Studio runtime

that MapLink was built with. That is one of the reasons why most MapLink C++ classes

override the new operator.

When a user derives from one of our classes the allocation occurs in the runtime library for the

version of Visual Studio they are using. Therefore if that version differs from the one used by

MapLink, that memory must be released by the caller rather than relying upon MapLink.

In general, when passing a derived class to MapLink, if there is an ownership flag then you

cannot let MapLink take ownership when using a mixed development environment.

The following classes are known to present this issue if not used correctly.

• TSLCustomDataLayer

If you are not using the version of Visual Studio that MapLink was built with then you

need to manage the deletion of the TSLClientCustomDataLayer derived object yourself.

• TSLUserGeometryEntity

If you are not using the version of Visual Studio that MapLink was built with then you

need to manage the deletion of the TSLClientUserGeometryEntity derived object

yourself.

• TSLDynamicRendererCustom

If you are not using the version of Visual Studio that MapLink was built with then you

need to manage the deletion of the TSLDynamicRendererCustom derived object yourself.

• TSLDynamicRendererFactory

If you are not using the version of Visual Studio that MapLink was built with then you

cannot use this class.

• TSLInteractionModeManager

If you derive a class from TSLInteractionMode you need to call removeMode and delete

the mode yourself.

• TSL3DInteractionModeManager

If you derive a class from TSL3DInteractionMode you need to call removeMode and

delete the mode yourself.

• TSLDisplayObject

A new method releaseResources has been added. This should be overridden in a mixed

build environment.

• TSLDynamicDataObject

A new method destroy has been added. This should be overridden in a mixed build

environment.

 Installation on Linux, Embedded Linux, Android Platforms

UUM1242-10 Approved Commercial in Confidence 7

RELEASEABLE PROPRIETARY

4 INSTALLATION ON LINUX, EMBEDDED LINUX, ANDROID PLATFORMS

Embedded Linux and Android have their own installation setup. Please refer to the specific

documentation included with these platforms. The installation in all these cases involves

copying the contents of the distribution to an accessible hard drive and configuring the

compiler to find the include and shared libraries.

4.1 Installation from CD

The Core MapLink API libraries for UNIX/Linux/VxWorks are shipped uncompressed on a

separate CD-ROM or tape, in the following directories:

config Contains the configuration files.

docs Documentation & Help.

include Contains the header files for the MapLink C++ API’s.

lib64 Contains the 64bit MapLink shared libraries.1

Maps Sample Maps.

redist64 Contains 64bit deployable components.2

samples Contains samples of how to use the MapLink C++ API’s.

OptionalComponents Contains the Optional Library Components encrypted.

A script named mapl_init (csh shell) and mapl_init_bash (bash shell) is included to initialise

your environment, prior to building the samples. MapLink expects LD_LIBRARY_PATH and

MAPL_HOME environment variables to be correctly setup when MapLink applications are run. The

samples expect MAPL_LIB_DIR to be correctly set in order to build them.

To install the MapLink API libraries for UNIX/Linux/VxWorks, simply copy the contents of the

CD into a suitable directory on your system (for example, /usr2/MapLink). Do not copy

different platforms to the same installation directory as library names are not unique.

Although the UNIX/Linux/VxWorks runtime libraries are not locked, a valid licence is required

to legally use them.

4.2 Installation of TerrainSDK and Optional APIs

The optional API’s are now shipped encrypted on the Main CD in the directory

OptionalComponents.

This directory contains a README.txt file which explains how to decrypt the files and install the

contents on top of the Main Development SDK.

4.2.1 Additional Dependencies

The Database Interface SDK and Entity Store SDK require the Oracle Instant Client (version

10.2, 64bit).

1 64bit is not shipped for all platforms.

2 64bit is not shipped for all platforms.

 Installation on Linux, Embedded Linux, Android Platforms

UUM1242-10 Approved Commercial in Confidence 8

RELEASEABLE PROPRIETARY

MapLink Java requires Java 1.4 or newer.

The MapLink Web-Map Server SDK has been tested using Apache Tomcat 7.0.

 Upgrading On Linux, Solaris, Embedded Linux, VxWorks Platforms

UUM1242-10 Approved Commercial in Confidence 9

RELEASEABLE PROPRIETARY

5 UPGRADING ON LINUX, SOLARIS, EMBEDDED LINUX, VXWORKS PLATFORMS

5.1 Upgrading from a Previous MapLink Pro Version

This release may be safely installed alongside any previous version of MapLink Pro provided it

is installed to a different directory.

The MapLink Pro libraries supplied do not provide multiple versioned interfaces. You will

therefore need to recompile your application when you upgrade. This is also true if only archive

files are supplied.

5.2 Using Multiple MapLink Pro Versions

All versions of MapLink Pro can happily co-exist on the same machine without interfering with

one another. It is quite common for developers to retain installation of older versions of

MapLink Pro to allow them to support their legacy applications built against them.

There is one important point that must be understood in order to use any older version.

MapLink Pro libraries are located at runtime using the LD_LIBRARY_PATH environment variable.

When using multiple versions of MapLink Pro on the same machine the path to the lib or

lib64 directory of the MapLink installation that you wish to use should be added to the

LD_LIBRARY_PATH. Only one MapLink Pro installation should be referenced in this fashion, as

otherwise the entry that appears first determines the MapLink Pro libraries that will be used.

It should be noted that this section refers specifically to MapLink Pro not a user deployed

application. For details on how to deploy your application please see the "MapLink Pro:

Deployment of End User Applications" document.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 10

RELEASEABLE PROPRIETARY

6 UPGRADING A C++/.NET APPLICATION

Upgrading from MapLink Pro 8.0 to MapLink Pro 10.0 should be straight forward. There are a

few breaking changes which are detailed below.

6.1 Breaking Changes for a Future Release

Deprecated methods older than two releases will be removed from the API.

The method calls which take what are essentially index values will be converted to unsigned

values.

The current licence keying approach is very likely to be modified. The probability is that the

next version of MapLink will require a machine to be re-licenced.

6.2 Breaking Changes for MapLink Pro 10.0

Numerous changes have been made to the MapLink Pro APIs and tools. The following are

highlights that may cause issues with an application when upgrading to MapLink 10.0.

6.2.1 Visual Studio Support

This release has been built with ‘Visual Studio 2015 Update 3’.

This change means that how you build against MapLink Pro will change.

For versions of Visual Studio older or newer than the above version you will need to build

against MapLink Pro using a concept called ‘Pseudo Debug’ rather than Debug (see section

3.4).

6.2.2 Supported Windows platforms

The following Windows platforms are no longer support for this and newer releases of MapLink

Pro:

• Windows XP

• Windows Vista

• Windows 8.0

The equivalent Server versions of the above are also no longer supported.

6.2.3 Core SDK (MapLink Pro main API)

The following methods have changed:

• bool TSLDrawingSurfaceBase::getBackgroundColour (TSLStyleID *value)

The following method has been deprecated:

• bool TSLClientCustomDataLayer::pick (const TSLEnvelope& extent,

TSLPickResultSet* results)

Use the new method:

bool TSLClientCustomDataLayer::pick (TSLRenderingInterface

renderingInterface, const TSLEnvelope& extent, TSLPickResultSet results)

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 11

RELEASEABLE PROPRIETARY

The deprecated method will be removed in the next release.

The following functional updates have been made that may require modifications to the

application:

• The drawing surface ID passed to TSLNDynamicDataObject::instantiateDO was

previously incorrect. This method will now be called with the correct ID, or user ID if set.

• The ID passed to TSL(N)DynamicDataObject::instantiateDO when

TSLInteractionModeMagnify creates a display object will now be correct if a user ID has

been set on the drawing surface.

6.2.3.1 GDAL/OGR

The MapLink Core SDK now links against GDAL/OGR. This was done as part of an internal

simplification of the loading of GIS data at runtime and to allow us to expand support in the

future for loading more data formats at runtime.

Please refer to the ‘MapLink Deployment of End User Applications’ for additional detail on what

needs to be added to an application deployment.

6.2.4 S-52 SDK

The TSLS52StateObject has a new pure virtual method called SHOW_TEXT_HALO(). This

method should just return true for the original behaviour.

6.2.5 S-63 SDK

Data stores created with older versions of MapLink should be re-created it at all possible if you

are using the TSLNTSurface for drawing, the OpenGL Drawing surface is not affected.

The rendering of areas has been changed so that polygons with holes will not have the holes

drawn correctly. The drawing of polygons with holes with GDI is very expensive.

The media ingest (TSLS*MediaIngestManager) workflow has been changed to convert any

polygons with holes into what we call keyholed polygons when the S-57/S-63 data is loaded

for the first time. These types of polygons can be drawn efficiently using the TSLNTSurface

and the OpenGL drawing surface.

6.2.6 .NET Applications

The .Net assembly ‘Envitia.MapLink.NativeHelpers.dll’ has been added in this release.

The MapLink .Net CoreSDK depends on this assembly.

Any application which uses the MapLink .Net CoreSDK will need an additional project

reference, or #using declaration for this dll.

Note: This assembly is built for ‘anyCPU’. A copy is provided in both bin and bin64 directories

for convenience.

6.2.7 .NET Framework Versions

The version 2 .NET framework assemblies have been removed, only framework 4 assemblies

have been provided.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 12

RELEASEABLE PROPRIETARY

6.2.8 MapLink Studio

The JHS Transverse Mercator projection was not taking into account false northing correctly.

This has been corrected.

Any map generated using the JHS Transverse Mercator should be re-created.

6.2.9 LandLink DIGM Converter

The export function that exports a TSLEntitySet into a DIGM blob has been renamed from

export to exportToDIGM.

6.2.10 ASRP Exporter and CADRG Exporter SDKs

The method’s named export have been changed to include the product being exported as the

keyword ‘export’ is now reserved by the C++ language.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 13

RELEASEABLE PROPRIETARY

6.3 Breaking Changes for MapLink Pro 8.0

The class names mentioned below for C++ are very similar to the class names in .NET.

6.3.1 Compiler Setup

When compiling applications that use MapLink Pro using Visual Studio, the compiler must be

set to treat wchar_t as a native built-in type. This setting can be found under the

Configuration Properties->C/C++->Language page of the project properties in Visual

Studio.

6.3.2 Unicode

MapLink Pro now supports Unicode using the UTF-8 character encoding. Please review section

6.3.13 below.

6.3.3 Old File Formats

Windows and other Operating Systems only support a single Code Page at a time. Older

versions of MapLink on Windows displayed multi-byte text data using the system code page on

Windows. This approach will not work when the need is to display multiple languages.

This has necessitated a change to the way text is processed so that we store text as UTF-8

internally and expect an application to pass UTF-8 text to MapLink and to accept UTF-8 from

MapLink.

For additional information please see section 6.3.13 below.

6.3.3.1 TSLVariant

When writing or reading a TSLVariant a TSLVariantTypeChar may be promoted to a

TSLVariantTypeString. Both these types of variant are interchangeable as the definition

depends on how long the text is in bytes.

6.3.3.2 Maps

Maps created for older versions of MapLink Pro should load and display without needing to be

modified. If you have problems please refer to section 6.3.13.

If you have problems with older maps we do need to know so that we can assess the issues

people are encountering to see if we need to modify how we convert text on reading.

6.3.4 Transverse Mercator Projection

EPSG have changed the formula used for Transverse Mercator while retaining the EPSG IDs for

the affected Coordinate Systems that use Transverse Mercator.

The original formula "USGS Snyder" and "JHS" formulas produce similar results in a +-4

degree band around the central longitude. Outside this band the results diverge. The JHS

algorithm is more accurate out to +-40 degrees.

EPSG recommend that the two formulas are not mixed.

EPSG recommend the use of the JHS formula.

The Snyder formula was used in MapLink 7.5 and older versions.

Both formulas are available in MapLink 8.0 and newer.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 14

RELEASEABLE PROPRIETARY

6.3.4.1 TSLCoordinateSystem & tsltransforms.dat

EPSG have changed the formula used for Transverse Mercator while retaining the EPSG IDs for

the affected Coordinate Systems that use Transverse Mercator.

The original formula "USGS Snyder" and "JHS" formulas produce similar results in a +-4

degree band around the central longitude. Outside this band the results diverge. The JHS

algorithm is more accurate out to +-40 degrees.

EPSG recommend that the two formulas are not mixed.

EPSG recommend the use of the JHS formula.

The Snyder formula was used in MapLink 7.5 and older versions. Both formulas are available in

MapLink 8.0 and newer.

To address the EPSG change to the Transverse Mercator a number of changes have been made

to tsltransforms.dat that may affect an application. The changes are outlined below:

• MapLink coordinate system IDs in the range [-5000..-9000] use the Transverse

Mercator JHS projection algorithm.

• IDs in the range [-1..-4900] use the original USGS Snyder Transverse Mercator

projection algorithm.

• The EPSG ID in the case of both Coordinate Systems are the same.

• The NAME has been updated to contain '(Snyder)' or '(JHS)' to distinguish the

algorithm used.

Where:

ID is the value used in TSLCoordinateSystem::findByID() and returned by

id().

NAME is the value used by TSLCoordinateSystem::findByName() and returned

by name().

The method TSLCoordinateSystem::findByName() functionality has changed slightly.

When looking up a Coordinate System that uses Transverse Mercator projection the method

expects one of two forms to be used, for example:

• "UTM (WGS84) Zone 1 North (Snyder)"

• "UTM (WGS84) Zone 1 North (JHS)"

For backwards compatibility the findByName() method will return the original Snyder

Coordinate System if "(Snyder)" or "(JHS)" is missing from the name being searched for. In

this case a warning will be placed on the TSLThreadedErrorStack.

The method TSLCoordianteSystem::findByEPSG() may not work as expected, for example;

const TSLCoordinateSystem *coordSystem =

TSLCoordianteSystem::findByEPSG(27700);

Returns the OSGB coordinate system using the Snyder Transverse Mercator formula. For the

new formula you need to do the following:

const TSLCoordinateSystem *coordSystems[2];

int numberFound = TSLCoordianteSystem::findByEPSG(27700, coordSystems, 2);

You would need to check the numberFound variable and then validate the name of each

returned TSLCoordinateSystem to see if it was the Snyder or JHS version. You could use the

MapLink IDs as these are unique.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 15

RELEASEABLE PROPRIETARY

6.3.4.2 TSLCoordinateConvertor

TSLCoordinateConvertor calls will need to be updated to specify which Transverse Mercator

formula to use.

The deprecated methods use the ‘USGS Snyder’ formula.

6.3.4.3 TSLMGRSGridDataLayer

The TSLMGRSGridDataLayer uses the TSLCoordianteConvertor to calculate both MGRS and

UTM information.

The default Transverse Mercator formula used is the ‘USGS Snyder’ formula if the Coordinate

System provided by the user or via the Drawing Surface does not use a Transverse Mercator

projection. You may change the default formula if required.

6.3.4.4 TSLWMSDataLayer and TSMWMTSDataLayer

The layers default to using the Transverse Mercator Snyder formula in preference to using the

JHS formula. This is because the majority of WMS/WMTS servers appear to not be using the

JHS formula.

You can change the behaviour by calling the setTransverseMercatorJHSFormula method.

6.3.4.5 GML and WFS Client SDK

The TSLGMLInstanceDataLoader has a get/set Transverse Mercator formula.

In addition the WFS Client SDK has similar methods to get/set the Transverse Mercator

formula.

6.3.5 TSLWMSDataLayer

The getCRSAt, getDimensionAt and getStyleAt methods of TSLWMSServiceLayer now return

all CRSs, dimensions and styles that apply to that layer instead of only the ones defined on

that layer in the service metadata.

The getDimensionAt method of TSLWMSServiceLayer has changed to return a new class

containing information about the dimension. This change is not compilation compatible with

code that was previously using the method with the 2nd and 3rd arguments as their default

values.

6.3.6 TSLWMTSDataLayer

The onTileMatrixSetNotSelected callback on TSLWMTSServiceSettingsCallbacks no longer

exists. Applications should instead implement the new onChoiceOfServiceCRSs abstract

method. This new callback means it is no longer required for applications to manually identify

and set common tile matrix sets on visible layers through the

TSLWMTSServiceLayer::selectTileMatrixSet method.

6.3.7 Font Symbols

The symbol font character type has been modified to be a 32bit unsigned integer. This now

represents a single UTF-32 code point rather than a single 8bit character. The values minus

one (-1) indicates that the value should be ignored. The value minus two (-2) represents the

concept of multiple values. These two values cannot be used. Reading of a font character

created in an older version of MapLink is supported.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 16

RELEASEABLE PROPRIETARY

Writing of a font character to an older MapLink version file format will not work in all

situations. Round-tripping is supported; i.e. to load an old TMF file and write out in an old

format. Writing out a to an old format where a value used is outside the code page originally

used or where the value is greater than 255 is unlikely to work as the value cannot be

represented as a single multi-byte character.

The following methods are affected:

• TSLRenderingInterface::setupSymbolAttributes

• TSLNTSurface::symbolStyleValue

• TSLMotifSurface::symbolStyleValue

The following rendering attributes classes/methods/enums are affected:

• Class: TSLRenderingAttributes::m_symbolFontCharacter

• Enum:

TSLRenderingAttributeInt::TSLRenderingAttributeSymbolFontCharacter

• bool TSLEntityBase::setRendering (TSLRenderingAttributeInt attribute, i

nt value)

• bool TSLEntityBase::getRendering (TSLRenderingAttributeInt attribute, i

nt* result) const

6.3.8 Definition of True & False

True and False were defined in tslatomic.h. These were not used and have been removed.

6.3.9 Editor SDK APP6A

Previously, the Editor SDK APP6A classes had a TSLAPP6AHelper object setup internally that

defaulted to use the APP6A Symbol configuration file. The choice of configuration file to use

could not be modified by the User. This meant that a situation could occur that a

TSLAPP6AHelper class specified by the user could be told to use a different configuration file,

e.g. a 2525B symbols file, whilst the helper class used internally by the Editor SDK would

always use the default APP6A symbols file.

To avoid this, when the user derives from the TSLAPP6ARequest class, the user must set the

m_helper member of their class to a TSLAPP6AHelper class object setup with the desired

symbols configuration file.

6.3.10 .NET Applications

The change to using UTF-8 as the character encoding in the MapLink C++ code are principally

hidden by the .NET API.

It is still advisable to read about the Unicode changes as many of the inherent limitations that

previous MapLink releases had will no longer apply.

This section describes the specific breaking changes for .NET that we are aware of.

6.3.10.1 Font Symbols

The Symbol font character type has been modified to be a 32bit unsigned integer. This now

represents a single UTF-32 code point. The values zero and minus one are ignored.

The following methods are affected:

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 17

RELEASEABLE PROPRIETARY

• TSLNRenderingInterface::setupSymbolAttributes

• TSLNDrawingSurface::symbolStyleValue

The following rendering attributes classes/methods/enums are affected:

• TSLNRenderingAttributes::symbolFontCharacter property

• Enum:

TSLNRederingAttribureInt::TSLNRenderingAttributeSymbolFontCharacter

• bool TSLNEntityBase::setRendering (TSLNRenderingAttributeInt attribute,

 System::UInt32 value)

• bool TSLNEntityBase::getRendering (TSLNRenderingAttributeInt attribute,

 OUT System::UInt32 % result) const

6.3.11 MapLink Studio

The following filters had a simplistic UTF-8 to Latin-1 conversion option in MapLink Studio:

• Shapefile

• MIF

• OS Mastermap

• OS Vector Map Local

This option will be ignored when generating new maps. The option may not work in exactly the

same way when generating older maps from MapLink Studio.

We would therefore recommend writing out to the latest MapLink version and upgrading any

application to take advantage of the correct display of UTF-8 strings.

Old maps should continue to be displayed correctly.

6.3.12 MapLink Studio Automation

The Maplink Studio Automation interface specifies strings as LPCTSTR. Programs that use this

interface should require no updates due to studio now being a Unicode application.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 18

RELEASEABLE PROPRIETARY

6.3.13 Unicode

The MapLink Pro backward compatibility has been broken with the introduction of Unicode

support in the way 8-bit characters are handled.

6.3.13.1 Text/String Handling

All text data within MapLink is now UTF-8 encoded. MapLink expects all string passed via the

API functions to be encoded in UTF-8 and will return all text to user applications in UTF-8.

Prior to support of Unicode users may have relied upon 8-bit character strings being passed

through the MapLink Pro API without change. Now this is only true for 7-bit ASCII3 and 8-bit

UTF-8 encoded strings.

You will not be affected by these changes if:

• You only used 7-bit ASCII strings.

• You used the .NET SDKs.

• You use a non-Windows platform (these are usually UTF-8 by default).

In order to support Unicode with MapLink Pro the following behavioural changes were made at

the API:

• Filename and path names have to be long filename/paths on Windows

• Text has to be UTF-8. Passing text in the System Code Page to MapLink is no longer

supported.

• All text passed to MapLink is assumed to be UTF-8.

To minimise the impact of this change MapLink will read and convert all text from files

generated by MapLink versions prior to 8.0 on load to UTF-8 where possible. The default

conversion assumes the files contain text in the System Code Page on Windows, and CP-1252

on other platforms.

6.3.13.2 C++ SDKs

The MapLink API uses ‘char *’ pointers to pass string information to and from an application.

Previous versions of MapLink assumed that the data passed were ASCII though there was no

enforcement or checking performed. Internally the Microsoft CRT would have checked that

data was valid ASCII when functions such as isalnum, isalpha, islower etc… were called

generating an assert when running the debug version of MapLink.

This version of MapLink still uses ‘char *’ pointers to pass string information to and from an

application. The principal difference is that the data passed has to be UTF-8 which will accept

7-bit ASCII as a valid sub-set.

In the majority of cases an application may not need to adjust what is passed into MapLink

unless the application is being upgraded to Unicode or the user did not use 7-bit ASCII.

MapLink provides two utility classes, TSLUTF8Encoder and TSLUTF8Decoder, to convert text

strings between the System Code Page, wide characters, and UTF-8 to aid in updating

applications that were previously passing text in the System Code Page to MapLink.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 19

RELEASEABLE PROPRIETARY

6.3.13.3 .NET SDKs

The .NET SDKs use the Windows concept of Unicode at the MapLink API.

The class TSLNCoordinateConverter takes System::Char for some of the conversion methods.

The data passed in and out in these cases is assumed to be 7-bit ASCII.

6.3.13.4 Text

The following Geometry Text primitives are currently supported by MapLink:

• TSLText / TSLNText

• TSLGeodeticText / TSLNGeodeticText

• TSL3DText / TSLN3DText

TSL3DText/TSLN3DText4 only supports a subset of 7-bit ASCII.

TSLText and TSLGeodeticText will display text in multiple languages. The text may contain

more than one language and the languages displayed may be left to right and right to left.

6.3.13.5 Fonts

Not all fonts contain all the necessary glyph entries to display Unicode strings correctly. If

some of the string displays correctly but the rest does not please try another font.

The font you use is key to the display of text. If the font does not support the language/script

then you need to find an alternative font that does. You can add new fonts to tslfonts.dat file.

6.3.13.6 Vertical Text Alignment

We do not currently support vertically aligned text. We will draw the text but it will be drawn

horizontally.

6.3.13.7 Right to Left Scripts

We support right to left scripts. The alignment of the string is not swapped as it can be in

some text editors.

You can mix different scripts within a single text item.

6.3.13.8 Vector Font

The vector font support is limited to 7-bit ASCII on both the GDI and X11 Drawing Surfaces.

Vector font drawing is not supported by the 2D OpenGL Drawing Surfaces.

All MapLink drawing surfaces support drawing rotated system text. This negates the need for

the Vector font as this was primarily used for drawing rotated text on platforms that could not

support drawing of rotated system fonts.

6.3.13.9 Windows

In previous versions of MapLink Text was drawn using the Code page of the application.

4 Please contact support if this is an issue so that we can gauge the importance of supporting Unicode in the 3D
Text primitive.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 20

RELEASEABLE PROPRIETARY

This approach limited the support language to a single language and did not correctly support

complex scripted languages such as Arabic. This support was not documented and used as a

work around by a few customers that required non-ASCII support.

MapLink now expects text to be UTF-8, though we have provided wchar_t helper methods, this

allows multiple languages to be drawn and supported.

On reading old data we will attempt to convert the text data to UTF-8.

6.3.13.9.1 Non-Windows

On non-windows platforms MapLink mapped the character codes directly to the font being

used. This was to all intents and purposes ASCII.

6.3.13.9.2 Filenames and Paths

• MapLink expects the filenames and paths on Windows to be long filenames/paths. Passing a

short filename/path may not work correctly.

• Paths relative to a drive-specific working directory are unsupported, e.g d:file.txt (file.txt

relative to the current working directory on drive D:)

• MapLink will attempt to convert a path without a drive letter using the current working

directory, paths such as /secure/source/foo/bar.baz will work fine, a path such as

foo/bar.baz will be used as a regular relative path

• The maximum supported filename and path length is 4096 characters.

6.3.13.10 Filters

Many of the filters in MapLink processed text data in the assumption that the data was ASCII.

In the case of the following filters this was not always true:

• VPF

• S-57

• Shapefile5

• MIF6

• OS Mastermap7

• OS Vector Map Local8

The MapLink filters have been updated to identify the text encoding and to convert all text to

UTF-8.

The ASCII filter has been enhanced to support UTF-8.

The GDAL/OGR filter is dependent upon the GDAL/OGR library correctly converting text to UTF-

8.

5 The panel in Studio had an option to convert ‘UTF-8 to Latin-1’ workaround.

6 The panel in Studio had an option to convert ‘UTF-8 to Latin-1’ workaround.

7 The panel in Studio had an option to convert ‘UTF-8 to Latin-1’ workaround.

8 The panel in Studio had an option to convert ‘UTF-8 to Latin-1’ workaround.

 Upgrading a C++/.NET Application

UUM1242-10 Approved Commercial in Confidence 21

RELEASEABLE PROPRIETARY

6.4 Upgrading application from MapLink Pro 7.1 or Older

If you are using a version of MapLink Pro older than version 7.1 please refer to the “Release

Notes” for the versions prior to MapLink 7.1 for details of changes and the MapLink 7.5

“Installation and Upgrade Notes”.

If you do not have access to the above documents for the older versions please contact

support@envitia.com for copies.

mailto:support@envitia.com

 DLL and Library Naming and their Locations

UUM1242-10 Approved Commercial in Confidence 22

RELEASEABLE PROPRIETARY

7 DLL AND LIBRARY NAMING AND THEIR LOCATIONS

7.1 Windows

7.1.1 DLL Naming Convention

A number of methods in the MapLink Pro API expect the user to pass a DLL name to them.

Because of the port in a previous version of MapLink to 64-bit the DLL names had to be

changed to allow 32-bit and 64-bit MapLink based applications to coexist without complicating

user code.

As such the following convention has been adopted (where 'D' indicates debug, and '64'

indicates 64-bit):

Build Configuration DLL Name Example Filename Required

64-bit Release DLLName64.DLL RasterFilter64.DLL RasterFilter

64-bit Debug DLLName64D.DLL RasterFilter64D.DLL RasterFilter

This simplifies coding as the same DLL name (usually filter) is passed to MapLink Pro. We will

then add the correct ending to the name based on the build configuration. As of MapLink 11.1

only 64-bit libraries are available to use however the naming of these has not been changed to

enable compatibility with existing applications.

7.1.2 Library Naming Convention

The library names for MapLink Pro follow the same convention as for naming DLLs, so for

example:

Build Configuration DLL Name Library Name

64-bit Release MapLink 64.DLL MapLink 64.lib

64-bit Debug MapLink 64D.DLL MapLink 64D.lib

 .NET SDKs

UUM1242-10 Approved Commercial in Confidence 23

RELEASEABLE PROPRIETARY

8 .NET SDKS

Unlike the C++ API, the .NET API has remained largely unchanged in this release.

8.1 64-Bit Assemblies

Whilst the convention in assembly naming in .NET is the use the same name for both 32-bit

and 64-bit assemblies, due to the dependency on the C++ MapLink libraries this is not

possible. Instead the .NET assemblies have used the same suffixes used by the C++ binaries.

Aside from this change there should be no other changes required to migrate to using 64-bit.

8.2 .NET Framework Versions

The version 2 .NET framework assemblies have been removed, only framework 4 assemblies

have been provided.

 64-bit Issues

UUM1242-10 Approved Commercial in Confidence 24

RELEASEABLE PROPRIETARY

9 64-BIT ISSUES

9.1 Supported Processors

The supported processors are listed in section 1.1.

Additionally early AMD x64 bit processors which lack support for CMPXCHG16B are not supported

as this operation is required.

These processors are the original "AMD Opteron Generation 1" (revision E and earlier).

9.2 API Types

We have introduced new MapLink API types to help with porting and developing new

Applications.

We advise that you use these new types. Please refer to the ‘API Types’ section of the MapLink

Developer’s Guide. On non-Windows platforms you are strongly advised to use these types.

9.3 Windows Stack Sizing

The stack model for Windows 64-bit is quite different from 32-bit. By default Windows only

specifies a 2MB stack. We recommend that you use at least 4MB. This is because the stack is

split into two one for data and one for return addresses.

