
Commercial in Confidence

Commercial in Confidence

MapLink Pro

Developer User Guide

 Document Ref: AUM1107-1.0\Approved

 Author: Keith Foster

 Date: August 2021

Envitia Ltd

North Heath Lane, Horsham, West Sussex

RH12 5UX, United Kingdom

Tel: 01403 273173

Fax: 01403 273123

Email: envitia@envitia.com

Web: http://www.envitia.com

© 2021 Envitia Ltd.

 Commercial in Confidence

 Table of Contents

© 2021 Envitia Ltd i AUM1107

 Commercial in Confidence

Table of Contents

1 Introduction ... 1

1.1 Training, Consultancy and Sub-Contracting... 1
1.2 Glossary ... 1

2 MapLink SDK Components and Concepts .. 3

2.1 MapLink Studio ... 3
2.2 Core SDK ... 4
2.3 OpenGL Drawing Surface .. 4
2.4 Direct Import SDK ... 4
2.5 Tracks SDK ... 5
2.6 Dynamic Data Object SDK .. 5
2.7 Editor SDK.. 5
2.8 Terrain SDK .. 5
2.9 MapLink 3D Earth SDK ... 6
2.10 OWSContext SDK .. 6
2.11 MapLink OGC Services ... 7
2.11.1 The Web Map Service... 7
2.11.2 The Web Processing Service ... 7
2.12 GeoPackage SDK ... 7
2.13 Network SDK .. 7
2.14 Spatial SDK .. 8
2.15 CADRG Exporter SDK ... 8
2.16 GML SDK .. 8
2.17 WFS Client SDK ... 8
2.18 S63 SDK .. 8
2.19 Deprecated SDKs .. 8
2.19.1 3D SDK .. 8
2.19.2 MapLink Application Framework SDK ... 9
2.19.3 Time SDK ... 9
2.19.4 Satellite Propagator SDK .. 9
2.19.5 Database Interfaces SDK .. 9
2.19.6 Entity Store SDK ... 9
2.19.7 MapLink Remote Seamless Layer Manager .. 9
2.19.8 Impact Assessment SDK .. 9
2.19.9 Accelerator SDK .. 9
2.19.10 Database Data Layer SDK .. 10

3 Basic MapLink Applications .. 11

3.1 Application Architecture ... 11
3.1.1 The Document/View Model ... 11
3.1.2 Error Handling .. 12
3.1.3 View and Interaction Modes .. 12
3.2 MapLink Pro Visual Studio Wizards ... 12
3.3 Coordinates and Positions ... 12
3.4 Configuration Data .. 13
3.5 Map Display using TSLMapDataLayer ... 13

4 Unicode .. 15

4.1 Unicode SDK Support ... 15
4.1.1 C++ SDKs .. 15
4.1.2 .NET SDKs .. 15
4.2 Unicode Geometry ... 15

 Commercial in Confidence

 Table of Contents

© 2021 Envitia Ltd ii AUM1107

 Commercial in Confidence

4.3 Fonts ... 15
4.3.1 Freely Available Fonts .. 16
4.3.2 Vertical Text Layouts ... 16
4.3.3 Right to Left Scripts ... 16
4.3.4 Vector Font ... 16
4.4 Filenames and Paths .. 16
4.4.1 Path length limitations ... 17
4.5 Backwards compatibility ... 17
4.5.1 Workarounds .. 17
4.6 Unicode FAQ ... 19

5 MapLink and your Development Environment....................................... 20

5.1 Library Usage and Configuration .. 20
5.1.1 Windows DLL/LIB Naming Convention .. 20
5.1.2 Visual Studio Warnings and Errors ... 20
5.2 Using other versions of Visual Studio with MapLink 21
5.2.1 Visual Studio Pseudo Debug .. 21

6 Deployment of End User Application... 23

6.1 Configuration Files ... 23
6.2 C++ .. 23
6.3 .NET .. 24

7 Samples.. 25

7.1 Qt Samples ... 25

8 Walkthrough 1 - Your First MapLink Application 27

8.1 Skeleton Application .. 27
8.2 Configure Project Properties.. 27
8.3 API Types ... 28
8.4 Initialisation and Clean Up .. 28
8.5 Managing the Document ... 30
8.6 Managing the View .. 31
8.7 Binding Layers and Drawing Surfaces... 31
8.8 Handling Resize Events .. 32
8.9 Handling Paint Events .. 33
8.10 Reducing Flicker and Improving Performance .. 33

9 Walkthrough 2 - Modifying the Visible Area ... 35

9.1 Defining and Implementing an Interaction Model ... 35
9.1.1 Adding Simple Zoom/Pan Handlers .. 35
9.1.2 Zoom to Rectangle .. 36
9.1.3 Grab Pan .. 38
9.2 Mouse Wheel .. 40
9.2.1 Wheel Support Issues .. 40
9.2.2 Wheel Controlled Zoom and Pan .. 40

10 Geometry and Overlays .. 42

10.1 Entities .. 42
10.1.1 TSLEntity ... 42
10.1.2 TSLPolyline ... 43
10.1.3 TSLPolygon ... 43
10.1.4 TSLText ... 44
10.1.5 TSLSymbol ... 44
10.1.6 TSLEllipse ... 47
10.1.7 TSLArc ... 47
10.1.8 TSLRectangle .. 48

 Commercial in Confidence

 Table of Contents

© 2021 Envitia Ltd iii AUM1107

 Commercial in Confidence

10.1.9 TSLEntitySet and other Collections .. 48
10.1.10 TSLBorderedPolygon .. 48
10.1.11 Geodetic Primitives .. 49
10.2 User Geometry .. 59
10.3 Data Layers .. 62
10.3.1 Utility Classes used during Entity Creation .. 62
10.4 GARS, MGRS and Latitude/Longitude data layers ... 62
10.4.1 The TSLMGRSGridDataLayer ... 63
10.4.2 The TSLLatLongGridDataLayer .. 65
10.4.3 The TSLGARSGridDataLayer ... 66
10.5 Additional Data Layers ... 67
10.5.1 Custom Data Layer .. 67
10.5.2 Standard Data Layer .. 67
10.5.3 Dynamic Data Object Layer .. 67
10.5.4 Oracle Spatial Database Layer (Windows releases only) 67
10.5.5 S57/S63 Data Layer (Windows releases only) ... 68
10.5.6 CADRG Data Layer .. 68
10.5.7 WMS DataLayer .. 68
10.5.8 WMTS DataLayer ... 68
10.5.9 KML DataLayer (Windows releases only) .. 68
10.5.10 Filter Data Layers (Windows releases only) ... 68
10.5.11 Direct Import Data layer .. 69
10.6 Rendering Configuration ... 70
10.6.1 Rendering Attributes .. 70
10.6.2 Entity Based Rendering .. 78
10.6.3 Feature Based Rendering .. 78
10.6.4 Determining the Source of Rendering Attributes .. 78
10.6.5 Determining Styles and Font Indices .. 80
10.6.6 Minimum Attribute Requirements .. 80
10.6.7 Why Can’t I See My Object?.. 80

11 Walkthrough 3 – Adding a Simple Vector Overlay 82

11.1 Interaction Mode Modifications .. 82
11.2 Adding a TSLStandardDataLayer ... 82
11.3 Adding the Overlay Menu and Handlers .. 83
11.4 Adding the Overlay Creation Interface .. 84
11.5 Triggering the Overlay Creation ... 86
11.6 Creating the Text Overlay ... 86
11.7 Creating the Symbol Overlay .. 87
11.8 Creating the Polygon Overlay .. 88
11.9 Creating the Polyline Overlay .. 88
11.10 Creating the Feature Based Symbol Overlay ... 89

12 Advanced Features of the Core SDK ... 91

12.1 Coordinate Systems ... 91
12.1.1 Transverse Mercator .. 91
12.1.2 TSLCoordinateConvertor... 92
12.2 Decluttering .. 92
12.2.1 Declutter Feature Name and ID ... 92
12.2.2 Declutter Status .. 93
12.2.3 Automatic Decluttering on Zoom ... 94
12.2.4 Declutter of Raster Features in Maps .. 94
12.3 Searching Your Data .. 94
12.3.1 Finding the Entity under the Cursor ... 94
12.3.2 Finding all Entities within an Area .. 95
12.3.3 Picking ... 96

 Commercial in Confidence

 Table of Contents

© 2021 Envitia Ltd iv AUM1107

 Commercial in Confidence

12.3.4 Other Searching Facilities ... 96
12.4 Dynamic Rendering ... 96
12.5 Optimisation Techniques .. 97
12.5.1 Buffering .. 97
12.5.2 Tiled Buffering .. 98
12.5.3 Caching .. 98
12.6 Rendering Configuration Files .. 100
12.6.1 Colours .. 100
12.6.2 Line Styles ... 101
12.6.3 Fill Styles ... 105
12.6.4 Symbols ... 108
12.6.5 Fonts ... 110
12.7 APP-6A and 2525B Symbology .. 111
12.8 Raster Display ... 114
12.8.1 Adding Rasters .. 114
12.8.2 Adding Masks .. 114
12.8.3 Raster Pyramids and Supported Formats .. 114
12.9 Loading and Saving Data Layer Contents .. 115
12.10 Interoperability ... 115
12.10.1 MapInfo MIF/MID Format ... 116
12.10.2 OS MasterMap Format .. 117
12.10.3 ShapeFile Format .. 117
12.10.4 OS NTF LandLine Format .. 117
12.10.5 Attribute Information ... 117
12.11 Seamless Layer Management .. 119
12.11.1 Remote Seamless Layer Manager .. 122
12.11.2 Validating an OS MasterMap Seamless Map .. 122
12.12 Layer History Management ... 122
12.13 Filter Data Layers .. 123
12.14 Web Map Service Data Layer .. 125

13 OpenGL Drawing Surface .. 127

13.1 Library Usage and Configuration .. 127
13.2 Hardware Requirements ... 127
13.3 Where to Begin? .. 128
13.3.1 Graphics Drivers.. 128
13.3.2 Which Class Should be Used? .. 129
13.3.3 What is the Difference Between TSLEGLSurface and TSLNativeEGLSurface? .. 129
13.3.4 Additional Data Layers for use with the OpenGL Surface 129
13.4 Realtime Reprojection .. 130
13.5 Walkthrough - The Simple OpenGL Surface Sample 131
13.5.1 Starting the Application - Choosing a Framebuffer Configuration 132
13.5.2 Initialisation.. 132
13.5.3 Creating the Drawing Surface ... 133
13.5.4 Handling Window Resizing .. 135
13.5.5 Drawing to the Window .. 136
13.5.6 Loading a Map .. 136
13.5.7 Changing the View of the Map ... 137
13.5.8 Changing the Active Interaction Mode .. 137
13.6 Additional Data Layers for the OpenGL Surface ... 138
13.7 The Drawing Surface Coordinate System and Custom Data Layers............... 139
13.7.1 Positioning Items In Practice ... 140
13.7.2 Interspersing Custom Rendering with MapLink Rendering 141
13.8 Transparency .. 143
13.9 Anti-aliasing ... 145
13.9.1 Multisampling ... 146

 Commercial in Confidence

 Table of Contents

© 2021 Envitia Ltd v AUM1107

 Commercial in Confidence

13.9.2 Post-processing Anti-aliasing .. 147
13.10 Hardware-Supported Raster Formats ... 148
13.11 Integrating with Other OpenGL Applications .. 149
13.11.1 Suggested Framebuffer Configurations ... 149
13.12 Off-screen Rendering ... 149
13.12.1 Redirecting Drawing Surface Output to a Framebuffer Object 150
13.12.2 Windowless Drawing Through GLX with the TSLGLXSurface 152
13.12.3 Windowless Drawing Through EGL with the TSLEGLSurface 154
13.12.4 Windowless Drawing on Windows with the TSLWGLSurface 154
13.13 Threading ... 155
13.14 Performance Tips .. 155
13.14.1 General Tips ... 155
13.14.2 Vector Geometry in Data Layers .. 156
13.14.3 Using the TSLRenderingInterface ... 158
13.14.4 Dynamic Renderers ... 159
13.14.5 Raster Data in Data Layers ... 159
13.14.6 Map Creation Guidelines ... 159
13.15 Behavioural Differences to Other Drawing Surfaces 160
13.16 Migrating from Other Drawing Surfaces .. 161
13.16.1 Interaction Modes .. 163
13.16.2 Applications Containing Custom GDI or Xlib Rendering 163

14 Direct Import SDK .. 166

14.1 Library Usage and Configuration .. 166
14.2 Supported Data Formats .. 166
14.3 Data Layout and Scale Bands .. 166
14.4 Data Processing and Display ... 167
14.5 Callbacks .. 167
14.6 Vector specific settings and styling .. 168
14.7 Raster specific settings... 168
14.8 Caching .. 168
14.8.1 In Memory Cache .. 168
14.8.2 On Disk Cache .. 169
14.8.3 Raster Draw Cache .. 169
14.9 Optimising Raster Data for Direct Import .. 169
14.9.1 Creating Overview Layers ... 169
14.9.2 Combining Raster Mosaics .. 169
14.10 Direct Import Drivers ... 170

15 Tracks SDK ... 171

15.1 Library Usage and Configuration .. 171
15.2 Track Display Manager Basics ... 171

16 Dynamic Overlays with the DDO SDK ... 172

16.1 Library Usage and Configuration .. 172
16.2 When to use Dynamic Data Objects ... 172
16.3 Object Data Layers .. 173
16.4 Custom Dynamic Data Objects .. 174
16.5 Custom Display Objects ... 174
16.6 Walkthrough 4 – Adding Simple Dynamic Objects 175
16.6.1 Configure Project Settings .. 176
16.6.2 Adding a TSLObjectDataLayer ... 176
16.6.3 Creating a Custom Dynamic Data Object .. 177
16.6.4 Moving the Dynamic Data Object ... 179
16.7 Advanced Uses of the Dynamic Data Object SDK 179
16.7.1 Multiple Representations .. 180

 Commercial in Confidence

 Table of Contents

© 2021 Envitia Ltd vi AUM1107

 Commercial in Confidence

16.7.2 Multiple Coordinate Systems ... 180
16.7.3 Rendering using Xlib or Win32 .. 180

17 Terrain SDK .. 181

17.1 Library Usage and Configuration .. 181
17.2 Where to Begin? .. 181
17.3 How Fast is Fast? .. 182
17.3.1 How does this work? .. 182
17.4 Lining it All Up (Coordinate Systems) ... 183
17.5 How do I get at the data? ... 185
17.6 What happens when there is no data for a point? (Interpolation) 187
17.7 How Accurate is my Data? (Querying Different Levels) 188
17.8 Contouring ... 189
17.8.1 Providing Data for Contouring ... 189
17.8.2 Types of Contours ... 191
17.8.3 Drawing the Contours .. 191
17.8.4 Performance Notes .. 195
17.9 Intervisibility/Viewshed Calculations .. 196
17.9.1 Input objects .. 196
17.9.2 Location Filters .. 196
17.9.3 Algorithm Objects .. 197
17.9.4 Compositor and output objects.. 197
17.9.5 Examples ... 198
17.9.6 Performance Considerations.. 200
17.9.7 Application integration ... 200

18 MapLink 3D Earth SDK .. 202

18.1 Sample Application .. 202
18.1.1 Interaction Modes .. 202
18.1.2 Trackball View Interaction .. 202
18.1.3 Select Geometry/Track .. 202
18.1.4 Create Polygon .. 202
18.1.5 Create Polyline .. 203
18.1.6 Create Text .. 203
18.1.7 Create Symbol .. 203
18.1.8 Create Extruded Polygon .. 203
18.1.9 Create Extruded Polyline .. 203
18.1.10 Delete Geometry ... 203
18.2 API usage ... 204
18.2.1 Layer loading .. 204
18.2.2 Terrain Loading ... 204
18.2.3 Camera Movement .. 204
18.2.4 Track Management .. 204
18.2.5 Managing Geometry... 205

19 Editor SDK .. 206

19.1 Library Usage and Configuration .. 206
19.2 Concepts .. 206
19.2.1 Operation ... 207
19.2.2 Select List .. 207
19.3 Editor Application Architecture .. 208
19.3.1 Limitations and Interaction with other MapLink Pro SDKs 208
19.4 User Interface Considerations ... 208
19.5 Configuration .. 209
19.5.1 Configuration File Format ... 209
19.6 Editor Management ... 209

 Commercial in Confidence

 Table of Contents

© 2021 Envitia Ltd vii AUM1107

 Commercial in Confidence

19.7 User Interface Handling .. 210
19.8 Activating Operations ... 210
19.9 Integrating the Editor SDK from First Principles ... 210
19.9.1 Set up the application configuration ... 211
19.9.2 Provide prompt capability for the Editor SDK ... 211
19.9.3 Initialise the Editor .. 211
19.9.4 Capturing and processing user interactions ... 211
19.9.5 Invoking Operations .. 211
19.10 Integrating the Editor SDK from using Standard Interaction Modes 212
19.10.1 Initialise the Editor .. 212
19.10.2 Invoking Operations .. 212
19.11 Custom User Operations ... 212
19.11.1 Types of Custom User Operation ... 212
19.11.2 Custom User Operation Event Handlers .. 213
19.11.3 Custom Operation Support ... 213
19.12 Advanced Editor SDK Topics ... 214

20 Geopackage SDK .. 215

20.1 Library Usage and Configuration .. 215

21 OWSContext SDK .. 216

22 MapLink OGC Services SDK ... 217

22.1 Library Usage and Configuration .. 217
22.2 The MapLink WMS ... 217
22.2.1 Introduction .. 217
22.2.2 Philosophy .. 218
22.2.3 Configuration .. 219
22.2.4 Library Usage and Configuration .. 219
22.2.5 Plug-In Writing .. 219
22.3 The MapLink WPS .. 222
22.3.1 Introduction .. 222
22.3.2 Library Usage and Project Configuration ... 222
22.3.3 Configuration .. 223
22.3.4 WPS Start Sequence .. 223
22.3.5 Plug-In Implementation ... 223
22.3.6 Plugin Data Source Implementation ... 224

23 Spatial SDK... 226

23.1 Library Usage and Configuration .. 226
23.2 Islands ... 226
23.2.1 What are Islands? ... 226
23.2.2 Creating Islands .. 226
23.2.3 Merging Islands ... 227
23.3 Additional Editor Operations ... 228

24 GML SDK ... 229

24.1 Library Usage and Configuration .. 229
24.2 Supported Capabilities ... 229
24.3 GML Application Schemas ... 230
24.3.1 Schema Storage .. 230
24.3.2 Schema Ingest .. 232
24.3.3 Schema Creation and Export ... 232
24.4 GML Instance Data Ingest and Export .. 234
24.4.1 Instance Data Ingest and Storage ... 234
24.4.2 Instance Data Export ... 236

25 WFS Client SDK .. 237

 Commercial in Confidence

 Table of Contents

© 2021 Envitia Ltd viii AUM1107

 Commercial in Confidence

25.1 Library Usage and Configuration .. 237
25.2 Supported Capabilities ... 238
25.3 Connecting to a WFS ... 238
25.4 Querying a WFS .. 238
25.5 The TSLWFSQuery class ... 239

26 .NET SDKs... 241

26.1 Library Usage and Configuration .. 241
26.2 C# Walkthrough 1 - Your First C# MapLink Application 242
26.2.1 Skeleton Application .. 242
26.2.2 Configure Project Properties.. 242
26.2.3 Initialisation and Clean Up .. 243
26.2.4 The Drawing Surface and Map Data Layer .. 244
26.2.5 Handling Paint and Resize Events .. 245
26.2.6 Further tweaks to your first MapLink C# application 246
26.3 VB Walkthrough 1 - Your First VB MapLink Application 247
26.3.1 Skeleton Application .. 247
26.3.2 Configure Project Properties.. 247
26.3.3 Initialisation and Clean Up .. 248
26.3.4 The Drawing Surface and Map Data Layer .. 249
26.3.5 Handling Paint and Resize Events .. 250
26.3.6 Further tweaks to your first MapLink VB application 251

27 MapLink Camera Manager .. 253

27.1 Library Usage and Configuration .. 253
27.2 MapLink Camera Manager Classes ... 253
27.2.1 TSLCameraManager ... 253
27.2.2 TSLFlightPath .. 254
27.2.3 TSLFlightPoint ... 254
27.2.4 TSLWayPoint .. 255
27.2.5 TSLWayPointSet .. 255
27.3 Sample Usage ... 256

28 Floating Point ... 260

29 Other SDKs ... 261

30 Threading ... 262

30.1 Known Threading Issues .. 262
30.2 Threading Options ... 264
30.3 Saving Data .. 264
30.4 Drawing Surface ID ... 264
30.5 CoreSDK .. 264
30.5.1 Drawing Surface Resource Loading .. 264
30.5.2 Drawing Surface Rendering .. 264
30.5.3 Coordinate System Resource Loading .. 264
30.5.4 Data Layers .. 265
30.5.5 Dynamic Rendering ... 265
30.5.6 TSLPathList .. 265
30.6 User Geometry .. 266
30.7 Dynamic Data Object Layer .. 266
30.8 Terrain SDK and Contouring SDK .. 266
30.9 3D SDK & Accelerator SDK ... 266
30.9.1 Accelerator Drawing Surface Rendering .. 267
30.9.2 3D Drawing Surface Rendering .. 267
30.10 X11 Threading .. 267

31 DIGM to TMF Conversion .. 268

 Commercial in Confidence

 Table of Contents

© 2021 Envitia Ltd ix AUM1107

 Commercial in Confidence

31.1 Rendering Attribute version setup.. 268
31.2 Complex polygon handling .. 269
31.3 Coordinate System setup ... 269
31.4 Perform import conversion ... 270

App A Developers Guide UNIX/Linux/VxWorks (X11) 271

A.1 Programming for X11 ... 271
A.1.1 TSLMotifSurface .. 271
A.1.2 Using GUI Toolkits with MapLink .. 272
A.2 Text Drawing .. 274
A.3 Dynamic Data Object SDK .. 274
A.4 Raster support .. 275
A.5 Holed Polygons ... 275
A.6 APP-6A and 2525B Symbology .. 276
A.7 Stroked Linestyles ... 276
A.8 X11 Error Handlers .. 277

App B Vector and Raster Data Format Support ... 278

B.1 Vector Datasets... 278
B.2 Raster Datasets... 279

App C Deprecated SDKs .. 280

C.1 3D SDK .. 280
C.1.1 Library Usage and Configuration .. 280
C.1.2 Migrating from 2D to 3D ... 281
C.1.3 The 3D Coordinate Space ... 281
C.1.4 Threading ... 281
C.1.5 Walkthrough 5 – Your First 3D Application .. 282
C.1.6 3D Entities ... 289
C.1.7 3D Custom Data Layers.. 296
C.1.8 Using the Camera .. 297
C.1.9 Integration with Other OpenGL Applications .. 297
C.1.10 Creating a 3D Model Plug-in .. 297
C.2 MapLink Application Framework SDK ... 298
C.2.1 Library Usage and Configuration .. 299
C.2.2 Philosophy .. 299
C.2.3 How does it work? ... 300
C.2.4 MAF Editor Plug-in ... 308
C.3 Time SDK ... 309
C.3.1 Library Usage and Configuration .. 310
C.3.2 Calibrating the Time Server .. 310
C.3.3 MapLink Time Classes .. 311
C.3.4 Sample Usage ... 313
C.4 Database Interface SDK ... 316
C.4.1 Library Usage and Configuration .. 316
C.4.2 How does it work? ... 317
C.4.3 Oracle Plugin Client Environment ... 317
C.4.4 Inserting data ... 317
C.4.5 Retrieving data ... 318
C.4.6 Updating data ... 318
C.4.7 Custom Collectors and Donators .. 318
C.5 Entity Store SDK ... 319
C.5.1 Library Usage and Configuration .. 319
C.5.2 How does it work? ... 319
C.5.3 Storage of Entities ... 320
C.5.4 Storage of Entity References ... 321

 Commercial in Confidence

 List of Figures

© 2021 Envitia Ltd x AUM1107

 Commercial in Confidence

C.6 Impact Assessment SDK .. 323
C.6.1 Library Usage and Configuration .. 323
C.6.2 Impact types .. 323
C.6.3 Assessment .. 324
C.6.4 Usage .. 324
C.7 Accelerator SDK .. 326
C.7.1 Library Usage and Configuration .. 327
C.7.2 Threading ... 327
C.7.3 Floating Point .. 328
C.7.4 Graphics Cards .. 328
C.7.5 Walkthrough 6 - Your First MapLink Accelerator SDK Application 328
C.7.6 Using the Accelerator with the WMS .. 334
C.7.7 Integrating Applications using OpenGL or DirectX 334
C.7.8 Custom Data-layer .. 337
C.7.9 Layer Drawing Order .. 338

List of Figures

Figure 1 Release Runtime Library Setting ... 22

Figure 2 Additional Dependencies .. 22

Figure 3 Geometry Hierarchy .. 42

Figure 4 Polyline ... 43

Figure 5 Polygon ... 43

Figure 6 Text .. 44

Figure 7 Symbols .. 45

Figure 8 Ellipse ... 47

Figure 9 Arc .. 47

Figure 10 Rectangle ... 48

Figure 11 Bordered Polygon .. 49

Figure 12 Geodetic Entities Hierarchy .. 49

Figure 13 Two-point geodetic polyline, showing the geodesic path from Heathrow to

Beijing. A Dynamic Arc map .. 50

Figure 14 Single geodetic polyline with four points, travelling through Sydney, San

Francisco, New York and London. .. 50

Figure 15 Four-point geodetic polygon ... 52

Figure 16 Four-point geodetic polygon reprojected into an orthogonal projection......... 53

Figure 17 Four-point geodetic polygon, but on a gnomonic projection. In this projection,

geodesics are straight lines, so the geodetic polygon looks like a standard

polygon. The distortion in its shape is due to the centre of projection being off

to one side of the geometry .. 53

Figure 18 Geodetic ellipse centred on London; x-radius 1000km, y-radius 2000km,

rotation 45°. ... 55

Figure 19 Geodetic ellipse centred on London; x- and y-radius 1000km 55

 Commercial in Confidence

 List of Figures

© 2021 Envitia Ltd xi AUM1107

 Commercial in Confidence

Figure 20 Geodetic ellipse centred on 85°S 0°E; x-radius 1000km, y-radius 2000km,

rotation 60°.].. 55

Figure 21 Geodetic arc centred on London; x-radius 1000km, y-radius 2000km, rotation

45°. ... 57

Figure 22 - Per Tile Storage Strategy ... 157

Figure 23 - Per Entity Set Storage Strategy .. 157

Figure 24 - Per Entity Storage Strategy .. 158

Figure 25 Terrain Pyramid .. 183

Figure 26 TSLWFSQuery classes hierarchy. ... 239

Figure 27 MapLink Camera Manager classes. .. 254

Figure 28 3D Globe with US States Extruded as polygons. 280

Figure 29 3D Entity Hierarchy ... 289

Figure 30 MapLink Time classes. ... 311

Commercial in Confidence

 Introduction

© 2021 Envitia Ltd 1 AUM1107

 Commercial in Confidence

1 Introduction

This document is intended to give developers a guide to designing and implementing

solutions using MapLink Pro. It covers all available MapLink SDKs, describing their

facilities and how to make the most of them.

The document mostly covers the Windows C++ SDKs. There are few differences

between the MapLink Pro Windows and X11 SDK’s. The .NET SDK has an almost one-to-

one mapping with the C++ SDK so despite code examples being in C++, the same

essential principles and steps apply whatever the programming language.

1.1 Training, Consultancy and Sub-Contracting

Envitia provides a range of training options to help you get the best from MapLink Pro

and MapLink Studio. These courses greatly help to accelerate your development,

produce optimised applications more quickly and to explore alternative ways of achieving

your objectives.

Dedicated consultancy can also be provided either on-site or remotely, allowing our

experienced developers to guide you towards the most appropriate approach to your

application arena. Customers frequently find this useful when adding additional new

functionality to their systems.

Envitia can also help accelerate your development by developing the MapLink component

of your application for you or by undertaking a more extensive part of your project for

you. Envitia has extensive experience of developing applications internally and for

external customers.

If you wish to discuss these opportunities, please contact Sales by email

sales@envitia.com or by phone: +44 1403 273173.

1.2 Glossary

API Application Programming Interface

BOM Byte Order Mark

DBIF Database Interfaces

DMS Digital Mapping System

DPI Dots per Inch

DDO Dynamic Data Object

DO Display Object

EPSG European Petroleum Survey Group. This organisation defines a standardised

database of Coordinate Systems. These contain numeric codes associated with

coordinate system definitions http://www.epsg.org/

GML Geographic Markup Language http://www.opengeospatial.org/standards/gml

IDE Integrated Development Environment

JPEG JPEG raster format

Layer A container that represents a collection of Geometry be it a Map or an Overlay.

MFC Microsoft Foundation Class

MDI Multiple Document Interface

STL C++ Standard Template Library

mailto:sales@envitia.com
http://www.epsg.org/
http://www.opengeospatial.org/standards/gml

Commercial in Confidence

 Introduction

© 2021 Envitia Ltd 2 AUM1107

 Commercial in Confidence

SDI Single Document Interface

SDK Software Developers Kit

TMF Envitia Map Format. Native geometry file format.

TIFF TIFF raster format

TMC The units that MapLink Pro uses to define a rectilinear coordinate space for

drawing Map data and Overlay data with.

Commercial in Confidence

 MapLink SDK Components and Concepts

© 2021 Envitia Ltd 3 AUM1107

 Commercial in Confidence

2 MapLink SDK Components and Concepts

This section gives an overview of each SDK, so that you can determine which of the

numerous MapLink Pro components will provide the best facilities for your solution.

2.1 MapLink Studio

MapLink Studio is a sophisticated map processing tool. It allows fusion of a wide range

of vector and raster map data with transformation and re-projection into a single

integrated picture. As a standalone application, it is usually used off-line to create highly

optimised maps. The generated maps are in turn used by user applications built with

the suite of MapLink SDK components. MapLink Studio is also a COM Automation Server

so can be used on-line and driven by a user application if necessary. More details of

MapLink Studio may be found in the other documentation supplied with your MapLink Pro

installation, notably the ‘MapLink Pro Studio Users Guide’.

Commercial in Confidence

 MapLink SDK Components and Concepts

© 2021 Envitia Ltd 4 AUM1107

 Commercial in Confidence

2.2 Core SDK

The Core SDK is the basis of all MapLink Pro applications. Like all MapLink SDK's, it is

modular and flexible. Unlike many other products, MapLink does not dictate the

architecture of your application. It is flexible enough to be easily integrated into

whatever architecture best fits your application domain.

The Core SDK provides the following basic facilities to a MapLink application:

• Visualisation of vector maps and overlays

• Visualisation of raster maps and overlays

• Loading of vector and raster data

• A suite of vector geometric primitives

• Access to attributes stored within maps generated by MapLink Studio.

• Management of configuration information

• Layering and decluttering of features

• Access to the powerful coordinate system engine for map transformations

• Control of Dynamic Projections for appropriate maps generated by MapLink

Studio

• Multi-threaded, progressive map display for smooth, responsive

applications

• Double buffering and other optimisation techniques

2.3 OpenGL Drawing Surface

The OpenGL drawing surface allows an application to take advantage of hardware

acceleration to enable high performance visualisations on both desktop and mobile

platforms.

The drawing surface provided by this SDK may be used as a drop-in replacement for the

GDI and X11 drawing surfaces in many situations.

This drawing surface provides additional performance-oriented functionality including the

ability to reproject the data in real time.

2.4 Direct Import SDK

The Direct Import SDK allows an application to load a wide variety of raster and vector

data formats at runtime in a scalable and performant manner.

This SDK provides the ability to reproject data to the specified output coordinate system

along with various vector and raster processing options.

Many of the options and concepts used by the Direct Import Layer are like those in

MapLink Studio.

This includes the ability to export a feature rendering configuration from MapLink Studio

in order to style vector data within the Direct Import Layer.

Commercial in Confidence

 MapLink SDK Components and Concepts

© 2021 Envitia Ltd 5 AUM1107

 Commercial in Confidence

2.5 Tracks SDK

The Envitia Tracks SDK provides simple map display and navigation using tracks

functionality through a .Net and C++ API.

The Tracks SDK is appropriate for customers who wish to deliver MapLink's highly

regarded performance and spatial data visualisation capabilities.

Features include support for:

• Visualisation of real-world entities through Track Display Manager(s).

• Track styling using application-defined symbols or using APP6A and 2525B

symbology.

• Track Level of Detail (LOD) visualisations.

• History: The ability to display tracks at any time in the past.

• Track history point trails.

• Direction indicators.

• Visibility of tracks.

• Track selection.

2.6 Dynamic Data Object SDK

The Dynamic Data Object SDK allows developers to create fully dynamic overlays within

a MapLink application. Each object within this overlay can have application specific data

associated with it through custom derivations of the base class. The architecture splits

the real-world Data Object from the visualisation, allowing the same object to be

displayed in different ways and in different positions according to application specific

rules.

MapLink automatically manages the creation and destruction of the Display Objects that

visualise the real-world Data Objects. By default, you have access to the underlying

MapLink Rendering Engine used to draw the maps, but if required, you can also override

the draw routines allowing any application specific optimisations or features to be

employed.

2.7 Editor SDK

The Editor SDK provides facilities for the interactive creation and manipulation of vector

overlays. It provides a suite of interactive operations, a customisable operation

management interface and components that allow for application specific specialisation

of existing operations. In addition, there are components for new application specific

operations. The management layer allows all operations to interact with the underlying

map or other vector data.

2.8 Terrain SDK

The Terrain SDK provides fast access to layered terrain data that has been prepared

through MapLink Studio. The methods on the Terrain Database object allow for query of

spot, line and area height information making fast terrain calculations straightforward.

The SDK also allows for generation of contour lines or polygons from an arbitrary data

source. Rendering of this contour information is fully controlled by the application.

Commercial in Confidence

 MapLink SDK Components and Concepts

© 2021 Envitia Ltd 6 AUM1107

 Commercial in Confidence

2.9 MapLink 3D Earth SDK

For software development teams who want to develop and augment high performance

three dimensional (3D) displays into their situational awareness mission systems, the

MapLink Earth SDK is a software development kit that leverages the highly performant,

mature MapLink API and geospatial capabilities of the MapLink software suite with the

3D visualisation capabilities of osgEarth.

Envitia’s MapLink Earth SDK provides an API very similar to the legacy MapLink 3D API.

Its current capabilities include:

• Applying MapLink’s terrain model to 3D model topology;

• Draping MapLink’s 2D map layers over terrain;

• MapLink Tracks with optional altitude dimension;

• Billboarded icon symbology.

The MapLink Earth SDK provides the following functionality:

• Draping of MapLink 2D data layers (TSLMapDataLayer,

TSLLatLongGridDataLayer, TSLStandardDataLayer) over a 3D terrain;

• Loading of terrain from MapLink Terrain Databases;

• Control of the 3D camera, in the style of the TSL3DCamera class;

• Display of 3D geometry/extruded 2D geometry;

• Visualization of tracked objects as billboarded 2D symbols.

The MapLink Earth SDK is provided as a shared library and header files. The MapLink

Earth SDK introduces a new abstract base class (TSLDrawingSurfaceBase) that supports

functionality common to both 2D and 3D drawing surfaces. Abstracted functionality

includes general layer management principles, support for 2D layers, and other similar

operations.

In 2D, manipulations to the map are performed directly on the map – rotation, panning,

zooming, etc. In 3D, the canonical implementation is not to manipulate the scene, but

instead to alter the viewpoint onto the scene via a camera construct, representing the

viewer position and orientation. The camera can pan, tilt and zoom in response to any

input desired by the developer.

The ability to chroma-key the 3D scene over a video feed (or any other alternative

backdrop) is supported by rendering the scene with a solid, configurable background

colour.

Applications can use the SDK to display multiple surfaces using the same shared or

discrete data objects, which may be configured with different cameras and visualization

parameters.

The SDK supports display of tracked objects as 2D billboards. Rendering can be defined

by MapLink vector entities or symbols, MapLink raster symbols and rasterized MapLink

military symbols. Track objects provide an elevation dimension to support positioning of

the object on or above ground.

2.10 OWSContext SDK

The OWSContext SDK allows a User to read, analyse, and display OWSContext

documents within MapLink.

http://www.owscontext.org/
http://www.owscontext.org/

Commercial in Confidence

 MapLink SDK Components and Concepts

© 2021 Envitia Ltd 7 AUM1107

 Commercial in Confidence

This SDK can read several offering types from an OWSContext document and provides a

plugin interface to allow other offering types to be integrated with the SDK.

• GML

• WMS

• WMTS

2.11 MapLink OGC Services

The MapLink OGC Services SDK should be used to construct one of the OGC Services

that MapLink implements. Currently MapLink supports the following OGC Service

implementations:

• The Web Map Service (WMS)

• The Web Processing Service (WPS)

2.11.1 The Web Map Service

The MapLink Web Map Service (WMS) provides a framework for serving maps across the

internet using standard OGC protocols. The MapLink WMS supports all versions of the

OGC Specifications including the latest 1.3.0 version.

2.11.2 The Web Processing Service

The MapLink Web Processing Service (WPS) provides a framework for geospatial web-

services in accordance with version 1.0.0 of the OGC specification. The MapLink WPS

framework provides the ability to deploy a general purpose "process" via the WPS so

that a compatible client can utilise it across a network or the Internet. A "process" could

for instance be an operation that converts geospatial data from one format to another,

but in truth could be any type of operation that takes zero or more inputs and returns

one or more outputs.

2.12 GeoPackage SDK

The GeoPackage SDK allows the user to read, analyse and display data from GeoPackage

data files.

A GeoPackage is a platform-independent SQLite database schema for storing and

transferring geographic vector features and image tiles. The schema contains specified

definitions, integrity assertions, format limitations and content constraints.

A GeoPackage may be “empty” (contain user data table(s) for vector features and/or tile

matrix pyramids with no row record content) or contain one or many vector feature type

records and/or one or many tile matrix pyramid tile images. GeoPackage metadata can

describe GeoPackage data contents and identify external data synchronisation sources

and targets. A GeoPackage may contain spatial indexes on feature geometries.

2.13 Network SDK

The Network SDK and its associated topological network generation tools add powerful

routing and spatial network analysis tools to any MapLink application.

The powerful cost-object concepts allow for fully flexible and customisable searches to be

made of the network. These searches can automatically find the route through the

network that minimises cost, distance, time or any other application defined criteria.

http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wps

Commercial in Confidence

 MapLink SDK Components and Concepts

© 2021 Envitia Ltd 8 AUM1107

 Commercial in Confidence

2.14 Spatial SDK

The Spatial SDK, also known as the LandLink SDK, is formed of two main components.

The first component comprises a set of specialised operations built upon the basic Editor

SDK. These operations employ powerful spatial analysis techniques to allow construction

of vector data derived from the underlying map. Other custom operations construct

specialised graphical primitives especially suited to the Land Registration market.

The second component of the Spatial SDK is a suite of configurable utility classes that

provide further map data analysis tools for the automatic construction of Land

Registration polygons. Combined with access to address databases such as

QuickAddress, this provides a powerful batch processing solution.

The Spatial SDK has also been enhanced with the ability to identify and process self-

contained ‘islands’ of changed data, where an island is defined as being a contiguous set

of features.

2.15 CADRG Exporter SDK

The CADRG Exporter SDK provides the ability to incorporate the generation of CADRG

and CIB within an application using MapLink.

2.16 GML SDK

The GML SDK provides the ability to both read and write OpenGIS® Geography Mark-up

Language (GML) version 3.1.1 application schemas and instance data which conform to

the Simple Feature Profile Level 0 (SF-0).

2.17 WFS Client SDK

The WFS Client SDK allowing interaction with OpenGIS® Web Feature Services (WFS)

that conform to version 1.1.0 of standard and serve their data as GML compatible with

the GML SDK.

2.18 S63 SDK

The S63 SDK allows an OEM to develop an IHO compliant S63 application.

Please refer to the "MapLink S63 SDK Developers Guide".

2.19 Deprecated SDKs

2.19.1 3D SDK

Please note that the deprecated Envitia 3D SDK is no-longer under development. It has

been superseded by the MapLink Earth SDK, see Section 2.9.

The 3D SDK extends the capabilities of the Core SDK by allowing users to be immersed

in rich geospatial models. The architecture of the 3D SDK is very flexible and parallels

that of the existing 2D Core SDK – thus maximising reuse of current MapLink

experience. Standard MapLink concepts such as Drawing Surfaces, Data Layers, Terrain

Databases and Entities are extended into the 3D space. 2D or 3D Data Layers may be

used interchangeably across 2D or 3D Drawing Surfaces – 2D layers may be draped over

height fields when displayed on 3D Drawing Surfaces, whilst 3D layers are displayed in

plan view on 2D Drawing Surfaces. The Data Layer concept has been extended to allow

Terrain Data Layers which are added to the 3D Drawing Surface to provide height

information.

Commercial in Confidence

 MapLink SDK Components and Concepts

© 2021 Envitia Ltd 9 AUM1107

 Commercial in Confidence

2.19.2 MapLink Application Framework SDK

The MapLink Application Framework (MAF) SDK provides a framework for building

standardised user-interfaces using MapLink components. It provides a large number of

pre-defined user-interface objects together with a notification mechanism for

communicating between them. Editing functionality is provided via the MapLink Editor

MAF SDK.

2.19.3 Time SDK

The Time SDK provides a framework for managing time. It consists of a Time Server

which distributes time to interested Time Clients. The time is provided by a Timer

object. Whilst the SDK provides a default timer, the framework allows users to provide

their own implementation.

2.19.4 Satellite Propagator SDK

The Satellite Propagator uses the standard TLE data to model positions of Satellites

(NORAD SGP4/SDP4).

The Satellite Propagator can be used in conjunction with the Timer SDK to animate the

display of satellites for display as 2D or in 3D objects (tracks).

The Satellite Propagator can be used to obtain the path of a satellite between a start

time and an end time.

2.19.5 Database Interfaces SDK

The MapLink Database Interfaces (DBIF) SDK provides a framework for storing and

querying TMF entities to and from database tables.

2.19.6 Entity Store SDK

The Entity Store SDK provides a framework which allows users to store entities and their

attributes to a database during the construction and update of a MapLink seamless layer.

It also provides a facility to perform a bulk-import of a map into a database. The SDK

also allows clients to store entity references in a database.

2.19.7 MapLink Remote Seamless Layer Manager

The MapLink Remote Seamless Layer Manager component is a server-side

implementation of the Seamless Layer Manager, useable via a Web Service.

2.19.8 Impact Assessment SDK

The Impact Assessment SDK provides the ability to determine the impact that any map

changes have on other primitives.

2.19.9 Accelerator SDK

The Accelerator SDK extends the capabilities of the Core SDK by providing two Drawing

Surfaces based on OpenGL (version 1.4 and newer) and DirectX (version 9c).

The Accelerator is designed to principally allow very fast rotation of raster maps using

OpenGL or DirectX.

http://en.wikipedia.org/wiki/Two-line_element_set

Commercial in Confidence

 MapLink SDK Components and Concepts

© 2021 Envitia Ltd 10 AUM1107

 Commercial in Confidence

2.19.10 Database Data Layer SDK

The Database Data Layer SDK allows the user to read and display data from a database.

Please see the Sample and API documentation.

Commercial in Confidence

 Basic MapLink Applications

© 2021 Envitia Ltd 11 AUM1107

 Commercial in Confidence

3 Basic MapLink Applications

At its simplest level, the MapLink Core SDK can be summarised in three concepts and

two sentences.

• Data is loaded into Layers.

• Layers are displayed on Drawing Surfaces.

Of course you'll probably need more detailed information before you design your

application, and this section is intended to give you that information.

3.1 Application Architecture

MapLink has almost unparalleled flexibility amongst GIS components. At the heart of

this lies the fact that MapLink is essentially passive. It does not create any windows, nor

trap any events. The drawback of this design decision is that you need to add a few

extra lines to your code. The benefit is that you don't have to design the rest of your

application around MapLink - it will bend to fit into whatever architecture is most suited

to your problem domain.

3.1.1 The Document/View Model

A common architecture in today’s applications is the Document/View model. This is

partly due to the popularity of Microsoft’s MFC library, but it just so happens that

MapLink fits very neatly into this type of application.

The document can be thought of as a MapLink Data Layer, or more likely, a set of Data

Layers. The Core SDK contains several specialisations of the base Data Layer, each

capable of displaying different types of data. The most common is the

TSLMapDataLayer. This manages and displays maps that have been generated by

MapLink Studio. Another common Data Layer is the TSLStandardDataLayer. This is

typically used to display simple vector overlays but can also be utilised by the Editor SDK

for complex interactive drawing.

The View concept maps directly onto the MapLink TSLDrawingSurface. In the same way

that a View is a visualisation of a Document, a TSLDrawingSurface visualises a set of

TSLDataLayer’s that have been attached to it. As described above, MapLink is passive,

so relevant events should be managed by the application and passed onto MapLink.

For simple applications that merely visualise data, MapLink will only be interested in the

initialisation, resize and paint events. These should generally be passed onto the

TSLDrawingSurface. More complex applications that use the Editor SDK may also need

to pass mouse events onto the TSLEditor class.

The MapLink samples and user applications created using the MapLink AppWizards (see

section 3.2) also provide a suite of utility classes that assist in managing mouse events

to control zooming and panning of the Drawing Surface. These are provided in source

code form so that they can be easily modified and enhanced to suit your particular

application.

Note that these concepts apply equally to single or multiple document interfaces. A Data

Layer may be displayed in many different Drawing Surfaces, and a Drawing Surface may

display many different Data Layers. Each Drawing Surface is independent of the others

and may display a different part of the Data Layer or be at a different zoom level.

Commercial in Confidence

 Basic MapLink Applications

© 2021 Envitia Ltd 12 AUM1107

 Commercial in Confidence

3.1.2 Error Handling

In keeping with its passive nature, MapLink will not interrupt your application by

throwing exceptions or bringing up an error dialog. Instead, it maintains an internal

stack of errors that have occurred and returns a failure status from those methods that

fail. The error stack may be accessed through the TSLThreadedErrorStack utility class.

(This class is a thread-safe version of the TSLErrorStack class which it supersedes).

TSLErrorStack is retained for backwards compatibility purposes but its use is

discouraged. .NET users have the TSLNErrorStack class, which is a wrapper around the

TSLThreadedErrorStack class, for provision of thread-safe access to the stack.

Error reports on the error stack are encoded in an error number with an associated

string to provide further information, such as a filename. Some pre-processor constants

and descriptive comments for each error are defined in header files supplied with the

MapLink Core SDK. These are the ‘*err.h’ files in the include directory. These allow

the application to identify the error that has occurred and handle it in a graceful manner.

3.1.2.1 Error Messages

The Error message strings are stored as a series of message files, which are contained in

the config directory, all having a ‘msg’ file ending. Only the primary message string is

contained in these files. Additional information may be generated by the SDK when an

error occurs.

The controlling message file is ‘allmaplinkerrors.msg’. This file will only be loaded

when the developer requests textual information on the Error.

The ‘msg’ files only provide additional information, so if they do not exist, then MapLink

will provide basic information. The controlling message file can also be trimmed to

reduce the loaded message strings.

Typically you may exclude the ‘msg’ files when memory is at a premium.

3.1.3 View and Interaction Modes

Most applications will require some sort of navigation controls such as pan and zoom. To

assist with the implementation of these, Envitia supply a suite of useful interaction

modes in source code form. The Windows MapLink samples provide the relevant source

code, which can be easily incorporated into your own application and modified to suit

your requirements.

3.2 MapLink Pro Visual Studio Wizards

This initial release does not include any Visual Studio 2015 wizards for generation of

simple samples.

We would suggest using one of the samples provided in the installation as a start point

for the various walkthroughs.

The Wizards will be updated via a subsequent patch.

3.3 Coordinates and Positions

MapLink uses several different types of coordinate storage. These are optimised for

particular uses.

Map Units (MU) are the basic Cartesian units generated by the Coordinate System

applied to a map within MapLink Studio. These are dependent upon the transformations

applied but are generally mapped to nominal metres in the chosen map coordinate

Commercial in Confidence

 Basic MapLink Applications

© 2021 Envitia Ltd 13 AUM1107

 Commercial in Confidence

system. The origin of this coordinate space is typically the centre of the map projection

that has been applied, modified by any false easting and northing.

Related to Map Units, User Units are available through the Core SDK. They are simply

scaled and offset versions of Map Units. Thus, if Map Units were in metres, a User Unit

scale of 1000 could be applied so that the map may be referenced in kilometres.

Likewise, the origin could be offset to the centre of the map space, the lower left corner

or some other user-defined position. The current view of a Drawing Surface is generally

specified in terms of User Units.

Latitude and Longitude are typically used for real world positions. It is important to note

that latitude/longitude coordinates are in themselves of no value since they are only

applicable to a particular reference datum. In MapLink, this is assumed by default to be

the reference datum of the map's Output Coordinate System. A flag on the conversion

functions allows this to be referenced via WGS84 instead. The Drawing Surface contains

methods that allow the current view to be set by specifying a latitude/longitude position

and a range in map units. This is particularly useful when using the Dynamic Projection

capabilities of MapLink, since the underlying Coordinate System, and hence the Map Unit

scale and origin may change.

TMC units are the internal integer units that MapLink uses to store its geometry. These

are independent of map and Drawing Surface and are used to create new geometric

primitives.

Device Units are the reference system of the output display device that a Drawing

Surface is attached to. These will typically be pixels, but under some circumstances,

such as MFC Print Preview, these are modified to represent some other device.

The Drawing Surface and Map Data Layer classes contain methods for conversion

between these various coordinate systems.

3.4 Configuration Data

MapLink holds style information in various configuration files. These configuration files

provide a mapping between internal styles or colour ID’s and their visualisations.

Standard configuration files for line-styles, fill-styles, fonts, symbols and colours are

provided in the installed MapLink config directory. When a style is attached to a

Feature Class or to an Entity, it stores the style ID. The run-time rendering engine looks

up the ID in the currently loaded style list.

The configuration data is held statically so usually need only be loaded once per

application run. The exception to this is the colours file. This is held statically but may

need to be reloaded to match the palette for a particular map. This means that if

multiple maps are displayed in a single application then they must be created using the

same palette.

3.5 Map Display using TSLMapDataLayer

The TSLMapDataLayer object manages the display of a Map that has been produced by

MapLink Studio. These Maps consist of several configuration files and a set of vector or

raster tiles. The TSLMapDataLayer maintains a configurable memory cache of tiles and

an optional, configurable disk cache of tiles. The latter is often used for remote or

Internet based systems.

As described in the MapLink Studio documentation, a map can consist of several detail

layers, each usually representing a particular area of interest at a particular level of

detail or zoom with further optimisation available through tiling. A TSLMapDataLayer will

automatically choose the appropriate detail layer according to configuration parameters

Commercial in Confidence

 Basic MapLink Applications

© 2021 Envitia Ltd 14 AUM1107

 Commercial in Confidence

set in MapLink Studio. Once a detail layer is chosen, the TSLMapDataLayer will manage

the loading and caching of relevant tiles. This is the default behaviour. For specific

requirements, the Data Layer can be forced to display a particular detail layer as long as

the automatic detail layer selection is disabled.

Commercial in Confidence

 Unicode

© 2021 Envitia Ltd 15 AUM1107

 Commercial in Confidence

4 Unicode

MapLink Pro supports Unicode on all supported platforms. This means that you can

display multiple languages on a map or layer using MapLink Pro. The data is stored

within MapLink as UTF-8.

4.1 Unicode SDK Support

4.1.1 C++ SDKs

The MapLink API uses ‘char *’ pointers to pass string information to and from an

application. MapLink expects data passed to the C++ API to be UTF-8 or 7-bit ASCII

(subset of UTF-8). Data passed back to the application will be UTF-8.

Two helper classes have been provided to help convert text data to and from UTF-8:

• TSLUTF8Decoder

• TSLUTF8Encoder

In most cases an application may not need to adjust what is passed into MapLink unless

the application is being upgraded to Unicode or the user did not use 7-bit ASCII.

For users migrating from a version of MapLink prior to 8.0 please see the section 4.5 for

backwards compatibility and workarounds.

4.1.2 .NET SDKs

The .NET SDKs use the Windows concept of Unicode at the MapLink API.

The class TSLNCoordinateConverter takes System::Char for some of the conversion

methods. The data passed in and out in these cases is assumed to be 7-bit ASCII.

4.2 Unicode Geometry

The following Geometry Text primitives are currently supported by MapLink:

• TSLText / TSLNText

• TSLGeodeticText / TSLNGeodeticText

• TSL3DText / TSLN3DText

TSL3DText/TSLN3DText1 only supports a subset of 7-bit ASCII.

TSLText and TSLGeodeticText will display text in multiple languages. The text may

contain more than one language and the languages displayed may be left to right and

right to left.

4.3 Fonts

The font you use is key to the display of text. If the font does not support the

language/script then you need to find an alternative font that does. This may happen

because not all fonts contain all the necessary glyph entries to display Unicode strings

correctly. You can add new fonts to tslfonts.dat file.

1 Please contact support if this is an issue so that we can gauge the importance of supporting
Unicode in the 3D Text primitive.

Commercial in Confidence

 Unicode

© 2021 Envitia Ltd 16 AUM1107

 Commercial in Confidence

4.3.1 Freely Available Fonts

The “Google Noto Fonts” use the Apache Licence 2.0. This set of fonts aims to support all

the world’s languages.

The MapLink configuration file ‘tslfonts.dat’ contains references to other freely useable

fonts and some which are commercial (commercial/’non-free’ fonts are commented out).

4.3.2 Vertical Text Layouts

Unicode vertical text layouts are not currently supported. Any vertical text will be drawn

horizontally.

4.3.3 Right to Left Scripts

We support right to left scripts. The alignment of the string is not swapped as it can be

in some text editors, therefore the positioning of a left or right aligned text string will be

the same for both left to right and right to left strings. You can mix different scripts

within a single text item.

4.3.4 Vector Font

The vector font support is limited to 7-bit ASCII on both the GDI and X11 Drawing

Surfaces. Vector font drawing is not supported by the 2D OpenGL Drawing Surfaces.

All MapLink drawing surfaces support drawing rotated system text. This negates the

need for the Vector font as this was primarily used for drawing rotated text on platforms

that could not support drawing of rotated system fonts.

4.4 Filenames and Paths

• All filenames and paths must be encoded as UTF-8.

• MapLink expects the filenames and paths on Windows to be ‘long’ paths.

Passing a ‘short’ or ‘8.3’ filename may not work correctly. These can be on

a local drive ‘C:\file.txt’ or on a network share ‘\\server\file.txt’.

• MapLink may also accept ‘UNC’ paths. These can be on a local drive

‘\\?\C:\file.txt’ or on a network share ‘\\?\UNC\server\file.txt’.

• Unless an application is using ‘UNC’ paths elsewhere it is recommended

that ‘long’ filenames be used. Applications do not need to covert paths to

‘UNC’ format for paths longer than ~260 characters.

• Many sections of the MapLink API support additional formats such as

folders, URLs, or datatype-specific identifiers.

• Paths relative to a drive-specific working directory are unsupported, e.g

d:file.txt (file.txt relative to the current working directory on drive D).

• MapLink will attempt to convert a path without a drive letter using the

current working directory, paths such as ‘/a/b/c/d.e’ will work whereas a

path such as ‘c/d.e’ will be treated as relative to the current working

directory.

http://www.google.com/get/noto/#/

Commercial in Confidence

 Unicode

© 2021 Envitia Ltd 17 AUM1107

 Commercial in Confidence

4.4.1 Path length limitations

On Windows the maximum path length for ‘long’ file names is ~260 characters. For

‘UNC’ paths it is 32,767 characters.

The maximum length supported by MapLink is 4096 characters. This applies to both

‘long’ paths and ‘UNC’ paths.

4.5 Backwards compatibility

The MapLink Pro backward compatibility (versions prior to MapLink 8.0) has been

partially broken with the introduction of Unicode support in the way 8-bit characters are

handled.

Prior to support of Unicode users may have relied upon 8-bit character strings being

passed through the MapLink Pro API without change. Now this is only true for 7-bit

ASCII2 and 8-bit UTF-8 encoded strings.

You will not be affected by these changes if:

• You only used 7-bit ASCII strings.

• You used the .NET SDKs.

• You use a non-Windows platform (these are usually UTF-8 by default).

In order to support Unicode with MapLink Pro we have had to break the following at the

API:

• Filename and path names have to be long filename/paths on Windows

• Text has to be UTF-8. We no longer support Text being passed to MapLink

as defined by the System Code page.

• All text is assumed to be UTF-8.

To minimise the impact of this change we will read and convert all text from files

generated by MapLink versions prior to 8.0 on load to UTF-8 where possible. The default

conversion assumes the files contain text in the System Code Page on Windows, and CP-

1252 on other platforms.

4.5.1 Workarounds

4.5.1.1 Text

Text is now expected to be 7-bit ASCII or UTF-8.

When MapLink Pro reads files generated by versions prior to 8.0 we process the string as

follows:

Read text

If the text is not UTF-8

Convert to UTF-8 using the System Code Page

2 7-bit ASCII is a subset of UTF-8

Commercial in Confidence

 Unicode

© 2021 Envitia Ltd 18 AUM1107

 Commercial in Confidence

In most cases this should be completely transparent to the application. If you experience

problems with text not being correctly converted, you can override the Code Page used

for the application using the following unsupported3 methods:

• void TSLifstream::legacySetEncodingOverride(TSLTextEncoding

encoding4);

• TSLTextEncoding TSLifstream::legacyGetEncodingOverride();

• void TSLofstream::legacySetEncodingOverride(TSLTextEncoding

encoding5);

• TSLTextEncoding TSLofstream::legacyGetEncodingOverride();

Setting a Code Page encoding to use will affect all text reading or writing.

Note:

Because we convert from UTF-8 to Multi-Byte for saving older version of the MapLink file

formats some languages may not convert well. The more complex the script, such as

Arabic, the less likely this will work.

If you use this approach, all data stored in the MapLink control files must be 7-bit ASCII

or in the Code Page that has been set. You cannot mix text in multiple Code Pages.

4.5.1.2 Text File Formats

The MapLink configuration files and control files are principally text based. If you have

modified the MapLink configuration files from a version of MapLink prior to 8.0 and you

wish to use these with MapLink 8.0 or later you may experience problems.

In the case of configuration files you should open the file in an editor such as Notepad++

and convert the file to UTF-8 without BOM (Byte Order Mark) and save the file. The

version at the top of the file should be updated to the latest version number for that file

format.

You should not update layer or MapLink Studio configuration files are these contain

multiple objects with each possibly at a different version.

3 The methods will be removed in a future release of MapLink. If you use these methods please let
us know why so that we can assess the impact of removal.
4 Only a limited set of Code Pages are listed in this enum. Please contact support@envitia.com if

you need to use a Code Page not listed.
5 Only a limited set of Code Pages are listed in this enum. Please contact support@envitia.com if
you need to use a Code Page not listed.

http://notepad-plus-plus.org/
mailto:support@envitia.com
mailto:support@envitia.com

Commercial in Confidence

 Unicode

© 2021 Envitia Ltd 19 AUM1107

 Commercial in Confidence

4.6 Unicode FAQ

Why have you chosen to use UTF-8 as the Unicode representation for MapLink

Pro?

• UTF-8 is cross platform.

• UTF-8 is compatible with 7-bit ASCII.

• The string terminator is still ‘\0’.

This means that significantly less needs to be changed internally to support

Unicode text within both MapLink and end user applications across all the platforms

supported.

Why did you not use wchar_t?

• wchar_t can be any size from 1 byte to 4 bytes depending on the platform

being used. The internal encoding of wchar_t is also platform dependent.

• wchar_t is not compatible with 7-bit ASCII.

• The string terminator might not be ‘\0’.

• From The Unicode Standard, chapter 5:

o The width of wchar_t is compiler-specific and can be as small as 8

bits. Consequently, programs that need to be portable across any C

or C++ compiler should not use wchar_t for storing Unicode text.

Why did you not use UCS2?

• UCS2 is only the default encoding for Unicode text on Windows.

• UCS2 is not backwards compatible with 7-bit ASCII.

Where can I find out more about UTF-8?

http://www.utf8everywhere.org/

http://www.utf8everywhere.org/

Commercial in Confidence

 MapLink and your Development

Environment

© 2021 Envitia Ltd 20 AUM1107

 Commercial in Confidence

5 MapLink and your Development Environment

5.1 Library Usage and Configuration

The MapLink C++ SDK’s on Windows platforms are supplied in 2 different flavours.

These are release and debug versions as dynamically linked libraries. The table below

describes the pre-processor directives and link options that should be set in the Project

Properties for using the MapLink Core SDK. For X11 targets, refer to the product

Release Notes.

Note that these settings apply when using Visual Studio 2015 SP3 only. If using a

different version of Visual Studio, please see section 5.2.

MapLink64.dll

Release mode, DLL version.
Uses Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Refer to the document “MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing. Where X.Y is the version of
MapLink you are deploying.

MapLink64d.dll

Debug mode, DLL version.
Uses Debug Multithreaded DLL C++ run-
time library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.
KEYED: Development machines only.

You must ensure that your own code settings match, especially in the use of the C++

run-time library and only link debug applications with debug versions of the libraries.

This is necessary since amongst other things, the Microsoft memory management library

is quite different in debug and release mode. For more information about this, see the

MSDN articles Q166504 and Q94248.

If you are using multiple MapLink SDKs, they must all be the same configuration as

regards debug/release on Windows platforms.

5.1.1 Windows DLL/LIB Naming Convention

Having both release and debug DLLs and Libraries means that a naming convention is

required to allow both to coexist.

As such the following convention has been adopted (where 'D' indicates debug). The ‘64’

indicates that the library is 64-bit, which used to be a necessary distinction before we

removed support for 32-bit.

Build Configuration DLL Name Lib Name Directory

64-bit Release DLLName64.DLL DLLName64.LIB bin64, lib64

64-bit Debug DLLName64D.DLL DLLName64D.LIB bin64, lib64

5.1.2 Visual Studio Warnings and Errors

The debug memory manager of Visual Studio attempts to report any memory that it

considers have leaked. Unfortunately, it does this after destruction of any statically

linked global objects but before destruction of any dynamically linked global objects.

This means that in the Debug DLL version of the MapLink library, Visual Studio will

erroneously report a few memory leaks. This should be ignored since they are not true

leaks and merely memory that is still in use prior to the static objects being destroyed.

Commercial in Confidence

 MapLink and your Development

Environment

© 2021 Envitia Ltd 21 AUM1107

 Commercial in Confidence

Unfortunately, since the MapLink libraries are not supplied with debug information, more

complex memory managers such as Purify also erroneously report memory leaks and

free memory mismatches.

A final point to note is that the Keying functionality sometimes reports “First Chance

Exceptions” generated upon application start-up. These are handled internally within

MapLink and may be safely ignored.

5.2 Using other versions of Visual Studio with MapLink

All libraries in this release of MapLink have been compiled and built using Microsoft

Visual Studio 2015 Update 3 (Please see the Release Notes for the version used when

building MapLink Pro).

It is possible however, for applications built using other releases of Visual Studio to use

this release of MapLink. There are a few limitations and rules that must be followed to

avoid problems with the C++ run-time library.

Firstly, it is only possible to use the DLL versions of the MapLink libraries.

Secondly, Envitia are not allowed to redistribute the Microsoft C++ run-time debug

libraries. This means that unless these already exist on your machine, the MapLink

debug libraries will have unresolved symbols and cannot be used. You can do one of two

things:

• Obtain the appropriate Visual Studio debug run-time libraries and install

them on your system. If you have installed this release of Visual Studio

then they may already exist.

• Do not use the debug version of MapLink libraries, but build your release

mode application with optimisations disabled and debug generation turned

on. This should be done both in the C++ compiler options and the linker

options. In Microsoft parlance this is termed ‘pseudo-debug’ and is used

for example, when debugging Visual Studio extensions.

Most sample applications have both Visual Studio 2010 files, and Visual Studio 2015

files. These are configured appropriately so can be used as reference for the settings.

If you have any other issues, or questions regarding Visual Studio support, then please

contact the Envitia support desk at support@envitia.com .

If you are using .NET languages other than C++, then you can use the .NET interop

manager to import the MapLink .NET libraries and use them instead.

5.2.1 Visual Studio Pseudo Debug

Setting up Visual Studio for pseudo-debug requires the project to be modified in two

places. The Visual Studio 2010 solutions have been changed to this configuration.

The first modification is to use the Release Runtime Library:

mailto:support@envitia.com

Commercial in Confidence

 MapLink and your Development

Environment

© 2021 Envitia Ltd 22 AUM1107

 Commercial in Confidence

Figure 1 Release Runtime Library Setting

The second modification is to use the Release versions of the MapLink DLLs:

Figure 2 Additional Dependencies

The "_DEBUG" preprocessor definition should be replaced with the "NDEBUG" one.

Commercial in Confidence

 Deployment of End User Application

© 2021 Envitia Ltd 23 AUM1107

 Commercial in Confidence

6 Deployment of End User Application

Please refer to the "MapLink Pro X.Y: Deployment of End User Applications" for detailed

information for deploying an application, including copyrights, deployment restrictions

and required DLLs.

The following sections are an overview of the necessary code changes for deployment.

6.1 Configuration Files

MapLink Pro loads all of its necessary configuration files from the ‘<MapLink

Installation>\config’ directory, usually through a call to

TSLDrawingSurface::loadStandardConfig. When deploying an application based upon

MapLink, a copy of this folder must be shipped along with the application.

The MapLink Pro installer adds a reference to the system registry to allow the MapLink

libraries to locate the config directory at runtime. Envitia do not recommend however,

that this registry key or any MapLink environment variables are used when deploying

applications based upon MapLink.

Therefore as the MapLink libraries will not know the new location of this directory on the

deployment machine’s file system, calls to various MapLink methods will need to be

changed to be passed the location of the config directory. The following table lists the

current method calls which will need to be updated, depending upon the technology

being used:

Note: If an application to be deployed does not use a method mentioned, then that

method may be ignored.

6.2 C++

Method

TSLDrawingSurface::loadStandardConfig

TSLDrawingSurface::setupColours - Pass the location of the tslcolours.dat file that the

config directory contains.

TSLDrawingSurface::setupFillStyles - Pass the location of the tslfillstyles.dat file

that the config directory contains.

TSLDrawingSurface::setupFonts - Pass the location of the tslfonts.dat file that the

config directory contains.

TSLDrawingSurface::setupLineStyles - Pass the location of the tsllinestyles.dat file

that the config directory contains.

TSLDrawingSurface::setupSymbols - Pass the location of the tslsymbols.dat file that the

config directory contains.

TSLCoordinateSystem::loadCoordinateSystems - Pass the location of the

tsltransforms.dat file that the config directory contains.

TSLAPP6AHelper::TSLAPP6AHelper

TSLAPP6AHelper::setDefaultConfigPath

TSL3DDrawingSurface::loadStandardConfig

Commercial in Confidence

 Deployment of End User Application

© 2021 Envitia Ltd 24 AUM1107

 Commercial in Confidence

TSL3DDrawingSurface::setupModels - Pass the location of the tslmodels.dat file that the

config directory contains.

TSLUtilityFunctions::setMapLinkHome – set the directory that contains the

MapLink config directory.

6.3 .NET

Method

TSLNDrawingSurface::loadStandardConfig

TSLNDrawingSurface::setupColours - Pass the location of the tslcolours.dat file that the

config directory contains.

TSLNDrawingSurface::setupFillStyles - Pass the location of the tslfillstyles.dat file

that the config directory contains.

TSLNDrawingSurface::setupFonts - Pass the location of the tslfonts.dat file that the

config directory contains.

TSLNDrawingSurface::setupLineStyles - Pass the location of the tsllinestyles.dat file

that the config directory contains.

TSLNDrawingSurface::setupSymbols - Pass the location of the tslsymbols.dat file that the

config directory contains.

TSLNCoordinateSystem::loadCoordinateSystems - Pass the location of the

tsltransforms.dat file that the config directory contains.

TSLNAPP6AHelper::TSLAPP6AHelper

TSLNAPP6AHelper::setDefaultConfigPath

TSLN3DDrawingSurface::loadStandardConfig

TSLN3DDrawingSurface::setupModels - Pass the location of the tslmodels.dat file that the

config directory contains.

TSLNUtilityFunctions::setMapLinkHome – set the directory that contains the

MapLink config directory.

Commercial in Confidence

 Samples

© 2021 Envitia Ltd 25 AUM1107

 Commercial in Confidence

7 Samples

MapLink Pro includes numerous samples to help you with starting development with an

SDK.

Samples are provided for .NET and C++.

While many of the samples are platform specific MapLink Pro itself can be used on both

Windows and X11 platforms (Linux and Solaris. Other platforms can be ported to so

please contact your Sales representative to discuss).

The samples for all platforms can be used to help inform you as to how to use the SDKs

on all platforms.

There are several classes that you need to swap out between platforms that relate to

Drawing technology (Drawing Surfaces).

If an SDK is not supported on your platform, please contact your Sales representative to

discuss.

7.1 Qt Samples

This section assumes that the reader is familiarly with developing with Qt.

The Qt samples do not have pre-configured Visual Studio or makefiles. Instead we ship

QMake project ‘.pro’ (See QMake Project) files from which you need to generate the

necessary build files.

The following is a summary of the necessary steps to build the samples on Windows.

• Install Qt 5.5.1 for Visual Studio 2015 if it is available. The other option is

to build Qt yourself.

o You should match the Qt version with the version of Visual Studio

you are using.

o The samples are configured to build in the MapLink Pro installation.

If they are moved the pro/pri files will need to be updated.

o If the Qt has not been built with the same version of Visual Studio

that MapLink Pro has been built with or you are not using the same

version of Visual Studio that MapLink Pro was built with you must

use the ‘Pseudo Debug’ concept (see section 5.2).

• Open the ‘Qt’ Command prompt.

o Change directory to the sample.

o set QMAKESPEC=win32-msvc2015

o qmake -t vcapp

• Load the generated.vcxproj into Visual Studio.

• Depending on the version of the Visual Studio you are using you may be

prompted to upgrade the project. Accept this upgrade.

• Set the Path to the Qt and MapLink libraries if necessary. By default, the

samples are set to be built from the directory they are installed to.

• Build the solution.

• Run the example.

http://doc.qt.nokia.com/latest/qmake-project-files.html

Commercial in Confidence

 Samples

© 2021 Envitia Ltd 26 AUM1107

 Commercial in Confidence

On X11 systems QMake will generate makefiles suitable for use with GNU Make. The

MapLink installation will be located using the MAPL_HOME environmental variable, which

can be set automatically using the mapl_init or mapl_init_bash scripts.

Additional Notes:

• If using QtCreator load the .pro file as a project into QtCreator.

• If you move the samples you need to modify the .pro file before you

create the project to point to the MapLink headers and lib files.

Commercial in Confidence

 Walkthrough 1 - Your First MapLink

Application

© 2021 Envitia Ltd 27 AUM1107

 Commercial in Confidence

8 Walkthrough 1 - Your First MapLink Application

Please note that the Wizards are not available for Visual Studio 2015, see section 3.2.

This section guides you through constructing a simple MapLink application from the

ground up. By the end, you should have an application that can load and display a map

generated from MapLink Studio and can correctly handle expose and resize events.

The example is based on MFC and the C++ SDK, but the same steps apply on X11

targets and with the other MapLink SDK’s. The steps below assume that you are using

Visual Studio 2010, but similar steps apply when using previous versions of Visual

Studio.

8.1 Skeleton Application

The starting point for this is an MFC Application Wizard generated executable. It can be

either an SDI or MDI application. The example code here will be based upon an MDI

application.

8.2 Configure Project Properties

Once created, build your skeleton application to ensure it compiles and links. You then

need to set up the Project Properties according to the version of the MapLink libraries

you wish to use. These are briefly described in section 5.1 and in the "MapLink Pro:

Installation and Upgrade Notes".

Make the following checks and modifications to the Project Properties:

• Under the C/C++, General category, add the MapLink include directory as

an additional include path, e.g. “C:\Program Files\Envitia\MapLink

pro\X.Y\include”

• Under the C/C++, Pre-processor category: add TTLDLL

Then check the following settings dependent on which configuration you are using.

Note: ‘X.Y’ refers to the MapLink version you are using.

• Under the Linker, General category: add the MapLink lib64 directory as

additional library path e.g. “C:\Program Files\Envitia\MapLink

Pro\X.Y\lib64”

• Under the Linker, Input category: add MapLink64d.lib as an

object/library module for the Debug configuration or MapLink64.lib for

the Release configuration.

• Under the C/C++, Code Generation, select run-time library “Multi-

Threaded Debug DLL” for Debug configuration or “Multi-Threaded DLL”

for Release configuration.

Add #include “MapLink.h” to relevant files. In this example, just add it into stdafx.h

to keep things simple.

Use the standard MFC Application Wizard to generate your skeleton application. The

example application here is called “Hello Globe”.

Commercial in Confidence

 Walkthrough 1 - Your First MapLink

Application

© 2021 Envitia Ltd 28 AUM1107

 Commercial in Confidence

8.3 API Types

Before we start the first walkthrough example, we should mention that MapLink Pro has

a few types to help with clearly identifying what a variable is used for and for portability

(cross platform and 64-bit).

The types are defined in tslplatformtypes.h and tslatomic.h.

The general types used are as follows:

 General API Type Meaning

TSLTMC TMC value.

TSLFeatureID Feature ID

TSLVersion Version related

TSLPropertyValue Property value.

TSLStyleID Linestyle ID, fill, text, colour etc.

TSLDeviceUnits Pixels or surface specific device units

TSLFileLength 64-bit signed integer to store a file length in.

TSLFilePosition 64-bit signed integer to store a file position in.

TSLFileOffset 64-bit signed integer to store a file offset in.

TSLTimeType 64-bit time value.

The types used to return OS specific drawing handles are as follows:

OS Specific API Type Meaning

TSLDeviceContext Windows 'HDC'.

TSLWindowHandle Windows 'HWND'.

TSLBitmapHandle Windows 'HBITMAP', X11 specific structure (defined

below).

TSLDrawableHandle X11 'Drawable'.

TSLVisualHandle X11 'Visual *'.

TSLColourmapHandle X11 'Colormap'.

TSLScreenHandle X11 'Screen *'.

TSLDisplayHandle X11 'Display *'.

For example; If you pass a specific OS type to a method or you are querying a method

which returns an OS specific type as defined above you may need to cast the result or

argument to the type expected.

8.4 Initialisation and Clean Up

The configuration files for MapLink are usually only loaded once per execution run using

static methods of TSLDrawingSurface. In an MFC application, these are normally loaded

during the InitInstance method of the Application object. The simplest way is to tell

MapLink to load all standard configuration files from a particular directory. If no

Commercial in Confidence

 Walkthrough 1 - Your First MapLink

Application

© 2021 Envitia Ltd 29 AUM1107

 Commercial in Confidence

directory is specified, then MapLink will assume that a full MapLink installation has taken

place and will attempt to load from there.

Once MapLink has been initialised, it needs to be cleaned up when the application exits,

otherwise Visual Studio will report numerous “leaks” which are in fact memory currently

in use when the application exits. This should be done in the ExitInstance method of

the App class. You will need to use the class Properties Overrides to add this method

since the MFC Application Wizard doesn’t add it by default. Alternatively, in Single

Document applications, it may be called in the destructor of the View or Document class.

If you are using the DLL versions of the MapLink libraries, please note the discussion of

memory leaks in section 5.1.2.

In the method InitInstance method of the App object, add a call to

TSLDrawingSurface::loadStandardConfig. This should be done before the

Document Template is instantiated.

You should be careful to check for, and report errors at this stage by using the

methods supplied on the TSLThreadedErrorStack utility class.

// Initialise MapLink configuration files.

const char * configDirPath = 0 ; // Replace if deployed

TSLThreadedErrorStack::clear() ;

TSLDrawingSurface::loadStandardConfig(configDirPath) ;

// CHeck to see if an errors occured.

TSLSimpleString msg("");

bool anyErrors =

 TSLThreadedErrorStack::errorString(msg,

 "Initialisation Errors : \n") ;

if (anyErrors)

{

 AfxMessageBox((LPCTSTR)TSLUTF8Decoder(msg), MB_OK) ;

 exit(0) ;

}

When your application is deployed, make configDirPath variable point to the

location of your applications copy of the MapLink config directory.

Use Properties, Overrides to create an ExitInstance method on the App object.

In this method, call MapLink to cleanup the configuration file load.

 TSLDrawingSurface::cleanup() ;

Commercial in Confidence

 Walkthrough 1 - Your First MapLink

Application

© 2021 Envitia Ltd 30 AUM1107

 Commercial in Confidence

8.5 Managing the Document

In terms of the Document/View architecture, the Document contains one or more

MapLink Data Layers. For the purposes of this example application, we shall restrict this

to a single TSLMapDataLayer.

Of course, you should also destroy the Data Layer once it is finished with.

In the private section of the Document, declare a pointer to a TSLMapDataLayer object.

This should be initialised to NULL in the Document constructor.

Use Properties, Overrides to create an OnOpenDocument handler and in this method,

instantiate a Data Layer and load the map file ensuring that you check for errors.

 BOOL CHelloGlobeDoc::OnOpenDocument(LPCTSTR lpszPathName)

 {

 if (!CDocument::OnOpenDocument(lpszPathName))

 return FALSE;

 m_mapDataLayer = new TSLMapDataLayer() ;

 if (!m_mapDataLayer->loadData(lpszPathName))

 {

 TSLSimpleString msg(“”);

bool anyErrors = TSLThreadedErrorStack::errorString(msg,

"Cannot load map : \n") ;

 if (anyErrors)

 AfxMessageBox(msg, MB_OK) ;

 m_mapDataLayer->destroy() ;

 m_mapDataLayer = NULL ;

 return FALSE ;

 }

 return TRUE;

 }

Use Properties, Overrides to override the DeleteContents method and in here, destroy

the Map Data Layer

 void CHelloGlobeDoc::DeleteContents()

 {

 if (m_mapDataLayer)

 {

 m_mapDataLayer->destroy() ;

 m_mapDataLayer = NULL ;

 }

 CDocument::DeleteContents();

 }

Commercial in Confidence

 Walkthrough 1 - Your First MapLink

Application

© 2021 Envitia Ltd 31 AUM1107

 Commercial in Confidence

8.6 Managing the View

In terms of the Document/View architecture, the View contains an instance of a

TSLDrawingSurface derived object – TSLNTSurface on Windows platforms,

TSLMotifSurface (for historical reasons this surface has Motif in its name however the

drawing surface only uses X11 client libraries such as Xft, XRender and Xlib) on X11

platforms. This is the only significant platform specific difference. In an MFC

application, this is usually instantiated in the OnInitialUpdate method since the

associated window doesn’t exist in the OnCreate event or in the View constructor.

8.7 Binding Layers and Drawing Surfaces

Once both Document and View are ready and available, you need to attach the Data

Layers to the Drawing Surface so that MapLink can display it.

The recommended approach to this is to create an addToSurface method on the

Document, which calls the underlying MapLink routines to add the Documents Data

Layers to the Views Drawing Surface. This structure avoids the View knowing the

contents of Document in any detail and is equally applicable to both Single and Multiple

Document Interfaces.

In the private section of the View, declare a pointer to a TSLNTSurface object. This

should be initialised to NULL in the View constructor.

Use Properties, Overrides to create an OnInitialUpdate handler and in this method,

check to see if a Drawing Surface exists and create one if necessary. You should also tell

MapLink about the default size of the window. In the destructor of the View, delete the

Drawing Surface if it exists.

 void CHelloGlobeView::OnInitialUpdate()

 {

 CView::OnInitialUpdate();

 if (!m_drawingSurface)

 {

 m_drawingSurface = new TSLNTSurface(m_hWnd, false) ;

 RECT cr ;

 GetClientRect(&cr) ;

 m_drawingSurface->wndResize(cr.left, cr.top,

 cr.right, cr.bottom, false) ;

 }

 }

 CHelloGlobeView::~CHelloGlobeView()

 {

 if (m_drawingSurface)

 {

 delete m_drawingSurface ;

 m_drawingSurface = NULL ;

 }

 }

Commercial in Confidence

 Walkthrough 1 - Your First MapLink

Application

© 2021 Envitia Ltd 32 AUM1107

 Commercial in Confidence

The addToSurface method should be called in the OnInitialUpdate method of the

View, just after the Drawing Surface has been created. In MFC applications, it is not

usually necessary to have an equivalent deleteFromSurface method since MFC calls

DeleteContents instead. If you are adding more than one Data Layer to the Drawing

Surface, each must have a unique name.

Note that MapLink automatically takes care of Data Layer and Drawing Surface

separation when either is destroyed.

8.8 Handling Resize Events

Since MapLink is passive, the application needs to handle relevant events and pass the

information onto MapLink. Most applications will only need to handle the window resize

and expose or paint events.

After handling a resize event, Windows or X will usually post a paint message so there is

no need to force a redraw in the resize handler. Just changing the window size may

distort the aspect ratio of the display, so MapLink can automatically adjust the visible

map area to be in sympathy with the aspect ratio of the window. This optional

behaviour allows an anchor point to be specified, which is kept at the same place when

updating the visible map area.

Create a public addToSurface method in the Document that takes a TSLDrawingSurface

pointer as a parameter. In this, add the Document’s Data Layer to the specified Drawing

Surface.

 bool CHelloGlobeDoc::addToSurface(TSLDrawingSurface *drawingSurface)

 {

 if (!m_mapDataLayer || !drawingSurface)

 return false ;

 return drawingSurface->addDataLayer(m_mapDataLayer, "map") ;

 }

Call this method in the View’s OnInitialUpdate method, after the Drawing Surface has

been created. At this point, it is also appropriate to define the initial visible map area. Here

we call the reset method to display the entire map.

 if (GetDocument()->addToSurface(m_drawingSurface))

 m_drawingSurface->reset(false) ;

Commercial in Confidence

 Walkthrough 1 - Your First MapLink

Application

© 2021 Envitia Ltd 33 AUM1107

 Commercial in Confidence

8.9 Handling Paint Events

A paint event can be triggered for many reasons, some of which will only want to redraw

part of the window. Under these circumstances, Windows will set up a Clip Box to define

the part that needs redrawing. To improve performance, it is best to only redraw that

part. It is most efficient to pass the required Device Unit extent to the Drawing Surface.

Now build the program, run it and load one of the sample maps.

8.10 Reducing Flicker and Improving Performance

So far, the application is not making use of MapLink performance optimisations and the

display will appear to flicker when it is redrawn. There are two reasons for this. Firstly,

MapLink is drawing directly to the window. Secondly, both MapLink and Windows are

clearing the display prior to the redraw. In depth discussion of these problems and their

Use Properties, Messages to create a WM_SIZE handler on the View class since it is not

there by default. In this method, check to see if a Drawing Surface exists and if so, pass the

new corners of the window to the Drawing Surface using the wndResize method. This

example will also inhibit an automatic redraw and ask MapLink to maintain the aspect ratio

locking the top left corner of the visible map area.

 void CHelloGlobeView::OnSize(UINT nType, int cx, int cy)

 {

 CView::OnSize(nType, cx, cy);

 if (m_drawingSurface)

 {

 m_drawingSurface->wndResize(0, 0, cx, cy, false,

 TSLResizeActionMaintainTopLeft);

 }

 }

In the OnDraw method of the View, query the required redraw area and pass it to the

Drawing Surface, asking MapLink to clear the background first.

 void CHelloGlobeView::OnDraw(CDC* pDC)

 {

 if (m_drawingSurface)

 {

 RECT rect ;

 if (pDC->GetClipBox(&rect) == NULLREGION)

 GetClientRect(&rect) ;

 m_drawingSurface->drawDU(rect.left, rect.bottom,

 rect.right, rect.top, true) ;

 }

 }

Commercial in Confidence

 Walkthrough 1 - Your First MapLink

Application

© 2021 Envitia Ltd 34 AUM1107

 Commercial in Confidence

solutions may be found in section 12.5. In the meantime, here are a couple of quick

fixes to reduce your eyestrain!

To solve the first issue, a single method call should be added when the Drawing Surface

is created to make it buffered. This will also improve performance on expose events that

are not due to the visible map area changing.

To solve the second issue, you should inhibit Windows from clearing the window.

The inhibition of the WM_ERASEBKGND message is appropriate since MapLink is drawing to

the entire window. If MapLink were drawing to only part of the window then it may be

necessary for the application to erase the areas that MapLink is not rendering into.

In the OnInitialUpdate method of the View, add the following call immediately after the

creation of the Drawing Surface.

 m_drawingSurface->setOption(TSLOptionDoubleBuffered, true) ;

Use Properties, Messages to add a View handler for the WM_ERASEBKGND message. Return

TRUE from this method to indicate to windows that the application will erase the background.

 BOOL CHelloGlobeView::OnEraseBkgnd(CDC* pDC)

 {

 return TRUE ;

 }

Commercial in Confidence

 Walkthrough 2 - Modifying the Visible Area

© 2021 Envitia Ltd 35 AUM1107

 Commercial in Confidence

9 Walkthrough 2 - Modifying the Visible Area

Congratulations! You have now created your first MapLink application. As applications

go though, it’s not the most useful since you are restricted to looking at the whole of the

map area. The next step is to add some user interaction and thus look at any area of

the map.

9.1 Defining and Implementing an Interaction Model

Firstly you must decide on your interaction model. This is the combination of menu

selections and mouse actions. With the sample applications, Envitia supplies the source

code for a pre-built interaction model. This varies according to the specific application

since some have more complex requirements such as editing. These usually require

switching modes via menu selections or toolbar buttons.

For the purposes of this example, we will now implement the following interaction model,

which does not require any additional menu items.

• Left button click: Pan to clicked point and zoom in by 25%

• Right button click: Zoom out by 25%

• Left button drag: Zoom in to chosen rectangle

• Right button drag: Grab and move the current view with the mouse

We shall define a click as a button press/release cycle where the cursor does not move

more than 3 pixels between press/release. A drag is a press/move/release action where

the movement is more than 3 pixels.

As an extension, we will also add some handling for the mouse wheel, should one be

installed. You should generally be careful not to create an interaction mechanism that is

totally dependent upon the mouse wheel since the user may not have such hardware.

There are also various driver issues regarding wheel support that are discussed later.

• Wheel spin: Zoom in and out

• Wheel press (or middle button click with 3 button mouse): Pan to clicked

point

For deployed applications, it is recommended that the TSLInteractionModes are used.

These examples are merely to show how custom interactions could be used and to

promote understanding of what goes on “under the bonnet” of MapLink.

9.1.1 Adding Simple Zoom/Pan Handlers

These handlers should be added to the View since each Drawing Surface is independent

even if attached to the same Data Layers. Note that all the view manipulation methods

on the TSLDrawingSurface return true if they were successful and false if unsuccessful.

A failure usually indicates that the Coordinate Space limits were reached. It is usually

more efficient to inhibit the automatic redraw in these methods and control the redraw

by invalidating the window. This is especially true when applying echo styles, for

example with zoom to rectangle.

Commercial in Confidence

 Walkthrough 2 - Modifying the Visible Area

© 2021 Envitia Ltd 36 AUM1107

 Commercial in Confidence

9.1.2 Zoom to Rectangle

For this interaction we need to remember the position that the user first pressed the left

button, and when they release it compare the press and release positions. If they are

more than 3 pixels apart then we can assume that they have dragged a rectangle,

convert the press and release mouse positions to User Units and ask the

TSLDrawingSurface to display that area. Of course, the aspect ratio of the selected

rectangle may not match the aspect ratio of the window. To cope with such situations,

the TSLDrawingSurface::resize method has a parameter to indicate that MapLink

should adjust the specified rectangle to match the window aspect ratio. If the aspect

ratios are mismatched, then MapLink will attempt to ensure that the entirety of the

specified rectangle is displayed.

Use Properties, Messages to add handlers to the View for the WM_LBUTTONUP and

WM_RBUTTONUP events.

In the OnLButtonUp method, check that a Drawing Surface has been created and if

so convert the mouse position to a User Unit position. This position should be used

as a parameter to the TSLDrawingSurface::pan method. If both pan and zoom

were successful, then invalidate the window rectangle to force a redraw.

void CHelloGlobeView::OnLButtonUp(UINT nFlags, CPoint point)

{

 if (m_drawingSurface)

 {

 double uux, uuy ;

 if (m_drawingSurface->DUToUU(point.x, point.y, &uux, &uuy))

 {

 if (m_drawingSurface->pan(uux, uuy, false))

 {

 if (m_drawingSurface->zoom(25, true, false))

 InvalidateRect(0, FALSE) ;

 }

 }

 }

 CView::OnLButtonUp(nFlags, point);

 }

In the OnRButtonUp method, check that a Drawing Surface has been created and if

so, simply zoom out.

void CHelloGlobeView::OnRButtonUp(UINT nFlags, CPoint point)

{

 if (m_drawingSurface)

 {

 if (m_drawingSurface->zoom(25, false, false))

 InvalidateRect(0, FALSE) ;

 }

 CView::OnRButtonUp(nFlags, point);

 }

Commercial in Confidence

 Walkthrough 2 - Modifying the Visible Area

© 2021 Envitia Ltd 37 AUM1107

 Commercial in Confidence

The TSLViewMode classes supplied with the MapLink SDK samples have a fully functional

“Zoom to Rectangle” mode, including echo of the rubber-band rectangle. For the

purposes of this simple introduction, we shall ignore the echo rectangle. For information

about the echo modes, please see the “mfc” sample, or alternatively use the MapLink

Wizard to create a skeleton application and use the standard TSLInteractionMode

classes.

Add a member variable to hold the pressed mouse location: CPoint m_lmb. Use

Properties, Messages to add a handler to the View for the WM_LBUTTONDOWN event.

In the OnLButtonDown method, store the mouse position.

 void CHelloGlobeView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 m_lmb = point ;

 CView::OnLButtonDown(nFlags, point);

 }

Modify the OnLButtonUp method after the Drawing Surface has been validated.

 if (abs(point.x - m_lmb.x) <= 3 && abs(point.y - m_lmb.y) <= 3)

 {

 // Pan to point and zoom

 double x, y ;

 if (m_drawingSurface->DUToUU(point.x, point.y, &x, &y))

 {

 if (m_drawingSurface->pan(x, y, false))

 {

 if (m_drawingSurface->zoom(25, true, false))

 InvalidateRect(0, FALSE) ;

 }

 }

 }

 else

 {

 // Zoom to rectangle

 double x1, y1, x2, y2 ;

 if (m_drawingSurface->DUToUU(point.x, point.y, &x1, &y1)

 && m_drawingSurface->DUToUU(m_lmb.x, m_lmb.y, &x2, &y2))

 {

 if (m_drawingSurface->resize(x1, y1, x2, y2, false, true))

 InvalidateRect(0, FALSE) ;

 }

 }

Commercial in Confidence

 Walkthrough 2 - Modifying the Visible Area

© 2021 Envitia Ltd 38 AUM1107

 Commercial in Confidence

9.1.3 Grab Pan

For this interaction we need to remember the position that the user first pressed the

right button and when the mouse moves, compare the mouse position with the press. If

they are more than 3 pixels apart then we can assume that they have dragged the

cursor and pan the map appropriately. This will also need a slight modification to the

right button release handler to inhibit the zoom out if a grab has occurred.

The next step is to create a mouse move handler and determine whether any grab is

active. If so, then the new display centre needs to be calculated and passed to MapLink.

As before, the TSLDrawingSurface::pan method will return true on success and false on

failure. A successful pan should invalidate the window rectangle.

Add a member variable to hold the pressed mouse location: CPoint m_rmb and also to hold the

last grabbed position: CPoint m_lastGrabPoint. This variable will be used to calculate delta

offsets for the pan. We also need flags to indicate whether a grab has occurred and whether one
should be checked for: bool m_grabbed, m_checkForGrab.

In the View constructor, initialise the boolean variables

 CHelloGlobeView::CHelloGlobeView()

 : m_drawingSurface(NULL), m_grabbed(false), m_checkForGrab(false)

 {

 }

Use Properties, Messages to add a handler to the View for the WM_RBUTTONDOWN event.

In the OnRButtonDown method, store the mouse position and clear the m_grabbed flag

and set the m_checkForGrab flag. These will be checked in the WM_MOUSEMOVE handler

and the WM_RBUTTONUP handler.

 void CHelloGlobeView::OnRButtonDown(UINT nFlags, CPoint point)

 {

 m_rmb = m_lastGrabPoint = point ;

 m_grabbed = false ;

 m_checkForGrab = true ;

 CView::OnRButtonDown(nFlags, point);

 }

The OnRButtonUp method now needs modifying to ensure that the zoom out only occurs if no

grab was active and the grab related flags should be cleared down.

 void CHelloGlobeView::OnRButtonUp(UINT nFlags, CPoint point)

 {

 if (m_drawingSurface && !m_grabbed)

 {

 if (m_drawingSurface->zoom(25, false, false))

 InvalidateRect(0, FALSE) ;

 }

 m_grabbed = m_checkForGrab = false ;

 CView::OnRButtonUp(nFlags, point);

 }

Commercial in Confidence

 Walkthrough 2 - Modifying the Visible Area

© 2021 Envitia Ltd 39 AUM1107

 Commercial in Confidence

Use Properties, Messages to add a handler to the View for the WM_MOUSEMOVE event

 void CHelloGlobeView::OnMouseMove(UINT nFlags, CPoint point)

 {

 if (m_checkForGrab

 && (m_grabbed || abs(point.x - m_rmb.x) > 3

 || abs(point.y - m_rmb.y) > 3))

 {

 // Calculate offset between the last point and the new point

 long du_offset_x = m_lastGrabPoint.x - point.x ;

 long du_offset_y = point.y - m_lastGrabPoint.y ;

 // Indicate a grab and remember the last grabbed point

 m_lastGrabPoint = point ;

 m_grabbed = true ;

 // Convert the offset from the last point into user units

 // No DUPerUU() function so we will take the long way round.

 double uu_per_du = m_drawingSurface->TMCperDU()

 / m_drawingSurface->TMCperUU() ;

 double uu_offset_x = du_offset_x * uu_per_du ;

 double uu_offset_y = du_offset_y * uu_per_du ;

 // Get the current centre point of the Drawing Surface

 double x, y, x1, y1, x2, y2 ;

 m_drawingSurface->getUUExtent(&x1, &y1, &x2, &y2) ;

 x = (x1 + x2) / 2 ;

 y = (y1 + y2) / 2 ;

 // Adjust the centre for the calculated offset

 x += uu_offset_x ;

 y += uu_offset_y ;

 // Pan and redraw the Drawing Surface

 // Request redraw only if pan is successful

 if (m_drawingSurface->pan(x, y, false))

 InvalidateRect(0, FALSE) ;

 }

 CView::OnMouseMove(nFlags, point);

 }

Commercial in Confidence

 Walkthrough 2 - Modifying the Visible Area

© 2021 Envitia Ltd 40 AUM1107

 Commercial in Confidence

9.2 Mouse Wheel

Many modern PC systems will have a wheel mouse available, where a wheel has

replaced the middle button. This can spin and also be pressed to act as a button.

9.2.1 Wheel Support Issues

There are many issues surrounding wheel mouse support, particularly since there are

many different drivers. Some drivers provide special functionality that overrides any

application specific handling and replaces it with generic scrolling support. This is

commonly termed ‘Universal Scrolling’ or ‘IntelliPoint Wheel Support’.

Many MapLink applications, such as the MapLink Viewer and MapLink Studio provide

specialist wheel handling to give control over the zoom factor. You can easily see if your

mouse driver is overriding the application wheel support by trying the wheel in the

MapLink Viewer. If this scrolls vertically instead of zooming in and out then your driver

is ignoring any application specific behaviour. Some drivers can only turn this override

off globally, whilst others allow it to be disabled for individual programs.

To control the generic scrolling, please review your mouse driver help, but you could try

the following:

• Invoke the Control Panel, Mouse dialog.

• Select the Wheel tab.

• With some drivers, there may be a ‘Universal Scrolling’ check box here.

Uncheck this box to remove the generic support and thereby enable

application specific behaviour.

• Other drivers may have an ‘Advanced’ button to press. Be careful here

since some drivers have two buttons labelled ‘Advanced’ on the same

panel! Try both.

• The Advanced Wheel Support dialog may allow you to disable IntelliPoint

wheel support or Universal Scrolling. You may be able to choose a specific

program executable should you wish to maintain the generic support for

non-wheel enabled programs.

If you have a mouse wheel but no access to the controls described above then you may

need to install a new mouse driver. Your mouse driver may also have specific

configuration control over what happens when you press the wheel. Again, please see

your mouse driver help for further information.

9.2.2 Wheel Controlled Zoom and Pan

Assuming you have disabled generic wheel support for your application, you can add in

support for zoom and pan operations using the mouse wheel. Firstly we will add wheel

zoom support.

Commercial in Confidence

 Walkthrough 2 - Modifying the Visible Area

© 2021 Envitia Ltd 41 AUM1107

 Commercial in Confidence

Adding wheel pan support in Microsoft Visual Studio 6 is a little more complex, since

Class Wizard does not know about the WM_MBUTTONUP Windows message. You are

therefore forced to add event handlers manually.

Use Properties, Messages to add a handler to the View for the WM_MOUSEWHEEL

message. In the OnMouseWheel method, it either zooms in or out dependent upon

the wheel direction.

BOOL CHelloGlobeView::OnMouseWheel(UINT nFlags,short zDelta,CPoint

pt)

 {

 // Zoom in or out depending upon the wheel direction

 if (m_drawingSurface

 && m_drawingSurface->zoom(30.0, zDelta > 0, false))

 {

 InvalidateRect(NULL, FALSE);

 }

 return CView::OnMouseWheel(nFlags, zDelta, pt);

 }

In Visual Studio .NET 2003 or 2005, you can use Properties, Messages to add a handler to the
View for the WM_MBUTTONUP event.

 void CHelloGlobeView::OnMButtonUp(UINT nFlags, CPoint point)

 {

 double x, y ;

 if (m_drawingSurface

 && m_drawingSurface->DUToUU(point.x, point.y, &x, &y))

 {

 if (m_drawingSurface->pan(x, y, false))

 InvalidateRect(0, FALSE) ;

 }

 CView::OnMButtonUp(nFlags, point);

 }

In the message map section at the top of the View .cpp file, add in a handler for

the event, just before the END_MESSAGE_MAP() macro.

 BEGIN_MESSAGE_MAP(CHelloGlobeView, CView)

 // Class Wizard has added lots of handlers here

 // Add this just before the END_MESSAGE_MAP

 ON_WM_MBUTTONUP

 END_MESSAGE_MAP()

In the message map section in the View .h file, add in a similar declaration

 // Add this just before the DECLARE_MESSAGE_MAP

 afx_msg void OnMButtonUp(UINT nFlags, CPoint point);

 DECLARE_MESSAGE_MAP()

Finally, implement the handler as per Visual Studio.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 42 AUM1107

 Commercial in Confidence

10 Geometry and Overlays

10.1 Entities

MapLink is often used to display vector data, either in maps or overlays. The underlying

geometry model of this vector data is shown below. This model can be directly mapped

onto the OpenGIS simple feature model (ignoring the User Geometry Entity). Each piece

of geometry stores its coordinates in internal TMC units.

Figure 3 Geometry Hierarchy

The MapLink concept for an instantiated piece of geometry is an Entity. In the 2D SDK,

these are accessed through classes derived from TSLEntity. Each different type of

geometry has its own class. The TSLEntityBase class provides a common point of

derivation for both 2D and 3D geometry.

Note that there is a distinction in MapLink between Geometry and Rendering. The

Geometry defines the topography of an object – where it is in the world. The Rendering

defines the visualisation of that object. The Geometry is always an inherent part of the

Entity, whereas the Rendering may be stored on the Entity, or separately on a Drawing

Surface or Data Layer. Rendering is discussed in further detail in section 10.6.

Several primitives define angles for rotation or reference points. These are measured

with 0 degrees as the x-axis and positive anti-clockwise.

10.1.1 TSLEntity

This is the base class for all 2D geometric primitives. It gives access to the common

methods of all Entity types including rendering definitions; attribute interrogation and

cross-Entity spatial queries. It gives no access to the geometric coordinates, since these

are dependent upon the derived class.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 43 AUM1107

 Commercial in Confidence

10.1.2 TSLPolyline

This is a single dimensional line, which has length, but is assumed to have no area. It is

typically used to represent such real-world features such as roads, rivers, railways,

routes, cables and boundaries. A polyline must have at least two points, but other than

that there are no limitations placed upon the coordinates.

Figure 4 Polyline

10.1.3 TSLPolygon

A polygon is a two-dimensional surface. It therefore has an area and a perimeter. The

rendering of a polygon may include a hollow fill so only the edge may be visible. A

polygon may have holes, which in MapLink terminology are called 'inners'. A valid

polygon has some restrictions placed upon the geometry so that it conforms to OpenGIS

definitions. The coordinates that define the outer or inners of a polygon must have no

consecutive duplicate points, and the edges may touch but not cross. The inners must

not overlap any other inner, or the outer. MapLink 4.7 and later have additional

functionality that removes single-point spikes.

Figure 5 Polygon

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 44 AUM1107

 Commercial in Confidence

MapLink has one important difference from the OpenGIS specification, however. In

MapLink, the coordinates of an inner or outer ring may touch along an edge, rather than

at a point. This allows for some significant optimisations to be done through key-holing

polygons so that they have only an outer ring. This gives increased performance on

some platforms.

10.1.4 TSLText

The TSLText object consists of a single position coordinate and a text string. Each text

primitive may have a horizontal or vertical alignment which dictates where the text is

drawn relative to the specified position. Text may be rotated and sized. Since the font

style and scaling have a large effect on the rendering of the piece of text, the extent of

the text primitive is held separately for each Drawing Surface that has a unique id.

Figure 6 Text

Text primitives in maps are held in a separate sub-layer within the map and are always

drawn after the polygons and polylines. This is to prevent text close to tile edges being

overwritten by the polygons that exist in the adjoining tile.

A single text object may be split over several lines, by including a carriage return (C++

‘\n’) character amongst the text. Any alignment and background will take all lines into

account.

10.1.5 TSLSymbol

Like TSLText objects, symbols are specified geometrically by a single coordinate. The

zoom level of the Drawing Surface and the rendering attributes attached to the Entity

can significantly affect the extent of a symbol. Because of this, symbols also hold their

extent separately for each uniquely identified Drawing Surface.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 45 AUM1107

 Commercial in Confidence

Figure 7 Symbols

There are two different types of symbols available in MapLink - vector and raster.

Vector symbols are scalable and are held in individual TMF files – a proprietary MapLink

format. They can be created using the Symbol Studio editor available in the MapLink bin

directory. Since MapLink 4.5, vector symbols can display text, which may be dynamic

(see the section following).

Raster symbols are held in supported image formats (e.g. PNG), with one symbol per

file. Note that not all types of drawing surface support scaling of raster symbols or

images with an alpha channel.

On Windows, a special subtype of raster symbols that use Windows Icons are available.

Icon symbols are displayed as fixed size and may contain an embedded transparency

mask so need not be rectangular. Earlier releases can only display standard 32x32 pixel

icons - Windows will automatically scale other sizes to fit into 32x32.

Symbol primitives in maps are held in a separate sub-layer within the map and are

always drawn after the polygons and polylines. This is to prevent symbols close to tile

edges being overwritten by the polygons that exist in the adjoining tile.

10.1.5.1 Text Replacement

To use the dynamic text features, use Symbol Studio to create a symbol which contains

text. If the text is prefixed by a double underscore, this indicates that the text may be

dynamic.

The following dynamic text strings are recognised:

• __name

A text string of "__name" will be replaced by the name property of the symbol

instance. This is the most efficient way to display a simple textual property

within the symbol - e.g. a road name.

At runtime this can be replaced using TSLEntity::name("text").

• __entityid

A text string of "__entityid" will be replaced by the numeric Entity ID of the

symbol instance. This is the most efficient way to display a simple integer

number.

At runtime this can be replaced using TSLEntity::id(number). This may also be

set when the entity is created.

• __ID

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 46 AUM1107

 Commercial in Confidence

The text string "__ID" (where ID is any two-character string) will look up the

value of the data attribute "ID" from the symbol instance. This allows any

embedded data attribute to be displayed. If there is no data attribute found, then

the text is not displayed.

This is the two-character ID of an attribute as setup on the TSLDataSet

(see TSLEntityBase::addDataSet).

Following the '__' a valid format string may be added. This will override the defaults as

defined below:

__name : %s

__entityid : %I64d

__ID : the default will depend on the mapping.

The name and/or entity ID are sometimes placed on the symbol instance by the MapLink

filter. Some filters, such as the ShapeFile and MIF filters, allow you to specify that the

name should be populated from attribute in the associated DBF or MID file.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 47 AUM1107

 Commercial in Confidence

10.1.6 TSLEllipse

A TSLEllipse is a two-dimensional surface that has area and perimeter. It is defined

geometrically by the centre point, x and y radial distances and rotation angle. The radial

distances are those before rotation is applied. MapLink currently has no facilities for

partial ellipses such as chords or sectors. TSLEllipse objects typically do not appear in

map data and are unlikely to be produced by MapLink Studio.

Figure 8 Ellipse

10.1.7 TSLArc

The TSLArc primitive is a one-dimensional curve, which is a portion of the circumference

of an ellipse. It therefore has length but no area. It is specified geometrically by the

centre of the ellipse, the x and y radial distances and the start and end angle of the

sweep. The radial distances and angles are those before rotation is applied. An

additional rotation attribute allows the source ellipse to be rotated. The sweep of the arc

is anti-clockwise from start angle to end angle. TSLArc objects typically do not appear in

map data and are unlikely to be produced by MapLink Studio.

Figure 9 Arc

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 48 AUM1107

 Commercial in Confidence

10.1.8 TSLRectangle

This type of geometric primitive is specified by two corners and a rotation angle. The

TSLRectangle may be rotated about its centre.

Figure 10 Rectangle

10.1.9 TSLEntitySet and other Collections

This is a collection of other Entities. Note that an Entity Set can contain other Entity

Sets and thus be hierarchical. It has no geometric attributes of its own but inherits its

envelope as the union of its children’s envelopes.

Unlike OpenGIS collections, a TSLEntitySet can contain different types of TSLEntity.

Simple single-type collections are available via the TSLMultiPolygon,

TSLMultiPolyline and TSLMultiPoint classes. These represent a single Entity, and as

such the constituent parts only have limited access to the geometry and are not derived

from the TSLEntity class.

10.1.10 TSLBorderedPolygon

This is a specialised primitive, often used in Land Registration applications. It is

essentially a normal Polygon, but each edge, including those around any holes, has a

separate thick border polygon associated with it. This border polygon can be drawn

internally or externally to the polygon. Where these border polygons meet, MapLink

performs processing to ensure that the join looks aesthetically pleasing.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 49 AUM1107

 Commercial in Confidence

Figure 11 Bordered Polygon

10.1.11 Geodetic Primitives

A geodetic primitive is a primitive whose shape is defined by the projection of the map

upon which it is drawn.

Geodetic primitives will be re-drawn if the map projection or map is changed maintaining

the positions of the control points in latitude and longitude but changing shape to match

the projection.

The shape of a geodetic primitive is defined by interpolating points along a geodesic

path, for example; consider the path an aeroplane flies between London and Beijing.

Aircraft take the shortest path, the geodesic, between points. In flat space, geodesics

are straight lines; on the surface of a sphere, geodesics are the minor arcs of great

circles; on the surface of the earth, approximated as an ellipsoid, geodesics are given by

Vincenty’s formulae.

The six geodetic primitives currently supported are shown below.

Figure 12 Geodetic Entities Hierarchy

The control points are specified as TMC values, these are then converted to latitude and

longitude internally when drawn.

Values of the enumeration TSLGeodeticInterpolationOptionsEnum can be passed to

the interpolationOptions method of geodetic polylines, polygons, ellipses and arcs to

specify whether to use Vincenty (default) or great circles

(TSLGeodeticInterpolationOptionsGreatCircle) to interpolate. For geodetic polylines

and polygons, interpolationOptions can also be used to specify whether the earth

should be treated as a spheroid (default) or a sphere (with

TSLGeodeticInterpolationOptionsSpherical). Multiple flags should be combined with

the bitwise OR operator.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 50 AUM1107

 Commercial in Confidence

10.1.11.1 TSLGeodeticPolyline

A geodetic polyline is a one-dimensional curve and defined by a sequence of at least two

points.

Geodetic polylines optionally support interpolation. When this is turned off, geodetic

polylines behave like normal polylines, except for changes in coordinate system. When

interpolation is turned on, the lines drawn between control points are interpolated to

follow geodesics along the earth’s surface.

If an interpolated geodetic polyline crosses over the dateline, it will be rendered as

separate pieces.

Interpolation can be turned on and off with the interpolation method. The post

distance used for interpolating, in km, can be set and retrieved with

interpolationDistance, and the interpolation method can be set with

interpolationOptions.

Figure 13 Two-point geodetic polyline, showing the geodesic path from Heathrow to
Beijing. A Dynamic Arc map

Figure 14 Single geodetic polyline with four points, travelling through Sydney, San

Francisco, New York and London.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 51 AUM1107

 Commercial in Confidence

Geodetic polylines are created in a very similar way to standard polylines:

 TSLStandardDataLayer* stdLayer = ...;

 TSLDataLayer* mapLayer = ...;

 TSLCoordSet* cs = new TSLCoordSet;

 TSLTMC x, y;

 if (!mapLayer->latLongToTMC(51.4775, -0.461389, &x, &y))

 ... // handle error

 cs->add(x, y);

 if (!mapLayer->latLongToTMC(40.08, 116.584444, &x, &y))

 ... // handle error

 cs->add(x, y);

 TSLGeodeticPolyline* polyline = stdLayer->entitySet()->

 createGeodeticPolyline(0, cs, true) ;

 if (!polyline)

 ... // handle error

 polyline->setRendering(TSLRenderingAttributeEdgeStyle, 1) ;

 polyline->setRendering(TSLRenderingAttributeEdgeColour,

 TSLComposeRGB(255,0,255)) ;

 polyline->setRendering(TSLRenderingAttributeEdgeThickness, 6) ;

Geodetic polylines can also be created directly with TSLGeodeticPolyline::create.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 52 AUM1107

 Commercial in Confidence

10.1.11.2 TSLGeodeticPolygon

A geodetic polygon is a closed shape and has a perimeter and an area.

Geodetic polygons optionally support interpolation. When this is turned off, geodetic

polygons behave like normal polygons, except for changes in coordinate system. When

interpolation is turned on, the lines drawn between the control points of the outer are

interpolated to follow geodesics along the earth’s surface.

Inners (holes) are not supported.

If an interpolated geodetic polygon crosses over the dateline, it will be rendered as

separate pieces. Polygons containing any poles may not be drawn as expected.

Interpolation can be turned on and off with the interpolation method. The post

distance used for interpolating, in km, can be set and retrieved with

interpolationDistance, and the interpolation method can be set with

interpolationOptions.

Figure 15 Four-point geodetic polygon

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 53 AUM1107

 Commercial in Confidence

Figure 16 Four-point geodetic polygon reprojected into an orthogonal projection

Figure 17 Four-point geodetic polygon, but on a gnomonic projection. In this projection,
geodesics are straight lines, so the geodetic polygon looks like a standard polygon. The

distortion in its shape is due to the centre of projection being off to one side of the
geometry

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 54 AUM1107

 Commercial in Confidence

10.1.11.3 TSLGeodeticEllipse

A TSLGeodeticEllipse primitive is a two-dimensional surface defined geometrically on

the earth’s surface by the centre point, x and y radial distances (in metres, not TMCs)

and rotation angle. The radial distances are those before rotation is applied.

Geodetic ellipses are created the same way as standard ellipses, except the x and y radii

are floating-point numbers, representing the geodesic distance from the centre in

metres. Metres are used because TMCs can distort and wrap around near the edges of

maps.

Geodetic ellipses also provide control over the interpolation of their edge. The

interpolation step angle, in radians, can be set using interpolationAngleDelta, and

the interpolation method can be set with interpolationOptions.

If a geodetic ellipse crosses the dateline, it will be rendered as separate pieces. A

geodetic ellipse can cover a pole.

Geodetic polygons are created in a very similar way to standard polygons:

 TSLStandardDataLayer* stdLayer = ...;

 TSLDataLayer* mapLayer = ...;

 TSLCoordSet* cs = new TSLCoordSet;

 TSLTMC x, y;

 if (!mapLayer->latLongToTMC(20.0, 10.0, &x, &y))

 ... // handle error

 cs->add(x, y);

 if (!mapLayer->latLongToTMC(40.0, 0.0, &x, &y))

 ... // handle error

 cs->add(x, y);

 if (!mapLayer->latLongToTMC(30.0, -20.0, &x, &y))

 ... // handle error

 cs->add(x, y);

 if (!mapLayer->latLongToTMC(70.0, 20.0, &x, &y))

 ... // handle error

 cs->add(x, y);

 TSLGeodeticPolygon* polygon = stdLayer->entitySet()->

 createGeodeticPolygon(0, cs, true) ;

 if (!polygon)

 ... // handle error

 polygon->setRendering(TSLRenderingAttributeEdgeStyle, 1) ;

 polygon->setRendering(TSLRenderingAttributeEdgeColour,

 TSLComposeRGB(255,0,255)) ;

 polygon->setRendering(TSLRenderingAttributeEdgeThickness, 2) ;

 polygon->setRendering(TSLRenderingAttributeFillStyle, 502) ;

 polygon->setRendering(TSLRenderingAttributeFillColour,

 TSLComposeRGB(255,128,255)) ;]

Geodetic polygons can also be created directly with TSLGeodeticPolygon::create.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 55 AUM1107

 Commercial in Confidence

Figure 18 Geodetic ellipse centred on London; x-radius 1000km, y-radius 2000km,
rotation 45°.

Figure 19 Geodetic ellipse centred on London; x- and y-radius 1000km

Figure 20 Geodetic ellipse centred on 85°S 0°E; x-radius 1000km, y-radius 2000km,

rotation 60°.]

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 56 AUM1107

 Commercial in Confidence

Geodetic ellipses are created in a similar way to standard ellipses, except for the radii:

 TSLStandardDataLayer* stdLayer = ...;

 TSLDataLayer* mapLayer = ...;

 TSLTMC x, y;

 if (!mapLayer->latLongToTMC(51.5, 0.05, &x, &y))

 ... // handle error

 TSLGeodeticEllipse* ellipse = stdLayer->entitySet()->

 createGeodeticEllipse(0, x, y,

 1000000.0, 2000000.0, M_PI/4.0);

 if (!ellipse)

 ... // handle error

 ellipse->setRendering(TSLRenderingAttributeEdgeStyle, 1) ;

 ellipse->setRendering(TSLRenderingAttributeEdgeColour,

 TSLComposeRGB(255,0,255)) ;

 ellipse->setRendering(TSLRenderingAttributeEdgeThickness, 2) ;

 ellipse->setRendering(TSLRenderingAttributeFillStyle, 502) ;

 ellipse->setRendering(TSLRenderingAttributeFillColour,

 TSLComposeRGB(255,128,255)) ;

Geodetic ellipses can also be created directly with TSLGeodeticEllipse::create.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 57 AUM1107

 Commercial in Confidence

10.1.11.4 TSLGeodeticArc

The TSLGeodeticArc primitive is a one-dimensional curve, which is a portion of the

circumference of a geodetic ellipse. It therefore has length but no area. It is specified

geometrically on the surface of the earth by the centre of the ellipse, the x and y radial

distances (in metres, not TMCs) and the start and end angle of the sweep. The radial

distances and angles are those before rotation is applied. An additional rotation

attribute allows the source geodetic ellipse to be rotated. The sweep of the geodetic arc

is anti-clockwise from start angle to end angle.

Geodetic arcs are created the same way as standard arcs, except the x and y radii are

floating-point numbers, representing the geodesic distance from the centre in metres.

Geodetic arcs also provide control over their interpolation. The interpolation step angle,

in radians, can be set using interpolationAngleDelta, and the interpolation method

can be set with interpolationOptions.

Figure 21 Geodetic arc centred on London; x-radius 1000km, y-radius 2000km, rotation
45°.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 58 AUM1107

 Commercial in Confidence

10.1.11.5 TSLGeodeticText

A TSLGeodeticText object consists of a single position coordinate and a text string, and

behaves identically to a TSLText, except for coordinate system changes.

10.1.11.6 TSLGeodeticSymbol

A TSLGeodeticSymbol is specified by a single coordinate, and behaves almost identically

to a TSLSymbol, except for coordinate system changes.

Geodetic arcs are created in a similar way to standard arcs, except for the radii:

 TSLStandardDataLayer* stdLayer = ...;

 TSLDataLayer* mapLayer = ...;

 TSLTMC x, y;

 if (!mapLayer->latLongToTMC(51.5, 0.05, &x, &y))

 ... // handle error

 TSLGeodeticArc* arc = stdLayer->entitySet()->

 createGeodeticArc(0, M_PI/2, 2*M_PI, x, y,

 1000000.0, 2000000.0, M_PI/4.0);

 if (!arc)

 ... // handle error

 arc->setRendering(TSLRenderingAttributeEdgeStyle, 1) ;

 arc->setRendering(TSLRenderingAttributeEdgeColour,

 TSLComposeRGB(255,0,255)) ;

 arc->setRendering(TSLRenderingAttributeEdgeThickness, 4) ;

Geodetic arcs can also be created directly with TSLGeodeticArc::create.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 59 AUM1107

 Commercial in Confidence

10.2 User Geometry

A user geometry entity allows the user to create custom-drawn geometry upon standard

data layers. User geometry can be saved to and loaded from TMF files. A piece of 2D

user geometry is composed of two parts, the entity (an instance of

TSLUserGeometryEntity, managed by MapLink) and the client (an instance derived from

TSLClientUserGeometryEntity, managed by the user).

10.2.1.1 TSLUserGeometryEntity

Instances of TSLUserGeometryEntity can be added to standard data layers, and are

allocated and deallocated by MapLink. Create instances by calling

TSLUserGeometryEntity::create, or by calling createUserGeometry on a

TSLEntitySet. The client of a user geometry entity can be set and retrieved by calling

setClientUserGeometryEntity and getClientUserGeometryEntity, respectively.

create, createUserGeometry, setClientUserGeometryEntity and load callback

functions (see section 10.2.1.3) all provide an ownsClient flag. If true, then MapLink will

automatically delete the client if it is replaced with setClientUserGeometryEntity or

when the entity is destroyed. If false, the user will have to destroy the client. This must

be false if the user’s code is compiled with a different compiler or runtime library version

to MapLink.

Creating and destroying user geometry:

 TSLStandardDataLayer* stdLayer = ...;

 TSLClientUserGeometryEntity* client = new ...;

 TSLUserGeometryEntity* entity = stdLayer->entitySet()->

 createUserGeometry(client, false);

 if (!entity)

 ... // handle error

 ...

 entity->destroy();

 delete client; // don’t need this if ownsClient is true

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 60 AUM1107

 Commercial in Confidence

10.2.1.2 TSLClientUserGeometryEntity

The user creates clients by deriving from TSLClientUserGeometryEntity and creating

their own instances of these subclasses. A client can then be attached to an entity as

explained above.

At a minimum, the user must override the virtual draw method.

Here is an example partial implementation of a user geometry client:

class RectangleClient : public TSLClientUserGeometryEntity

{

private:

 TSLEnvelope m_extent;

public:

 // Constructor

 RectangleClient(TSLTMC left, TSLTMC bottom, TSLTMC right, TSLTMC top)

 {

 m_extent.corners(left, bottom, right, top); // bounding box

 }

 // Destructor

 virtual ~RectangleClient()

 {

 }

 // Draw a rectangle using rendering interface

 virtual bool draw(int uniqueSurfaceID,

 TSLRenderingInterface* renderingInterface,

 const TSLEnvelope& extent, TSLRenderLevel renderLevel,

 double screenResolution)

 {

 const int blue = TSLDrawingSurface::getIDOfNearestColour(0,0,255);

 // Construct a rectangle

 TSLCoord coords[4]; // bottom left, top left, top right, bottom right

 coords[0] = m_extent.bottomLeft();

 coords[1] = TSLCoord(m_extent.bottomLeft().x(), m_extent.topRight().y());

 coords[2] = m_extent.topRight();

 coords[3] = TSLCoord(m_extent.topRight().x(), m_extent.bottomLeft().y());

 // Set up rendering attributes - translucent rectangle

 renderingInterface->setupEdgeAttributes(-1, 0, 0.0);

 renderingInterface->setupAreaAttributes(503, blue);

 // Attempt to draw rectangle, return false if fails

 return renderingInterface->drawPolygon(coords, _countof(coords));

 }

 // Save the rectangle

 virtual int save(TSLofstream& stream)

 {

 // Stream out data

 ...

 return RECTANGLE_USER_GEOMETRY_ID; // unique ID of the user geometry type

 }

 // Return the envelope for this rectangle

 virtual TSLEnvelope envelope(int uniqueSurfaceID)

 {

 return m_extent;

 }

};

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 61 AUM1107

 Commercial in Confidence

10.2.1.3 Loading and saving user geometry

If the user wants their user geometry classes to be saved and loaded along with other

types of geometry, they need to override the save method on the client, and to provide

a load callback function to the static method

TSLUserGeometryEntity::registerUserGeometryClientLoadCallback.

The save method on the client should return a positive integer to identify the type of

user geometry. These numbers should be unique as they can be passed to any

registered load callback function. It is suggested that the developer publish and track

these identifiers.

It is also suggested that the developer saves, along with any geometry data, a company

identifier, a byte-order mark, a geometry type ID and a version number.

To register a load callback function, a pointer to it must be passed to

TSLUserGeometryEntity::registerUserGeometryClientLoadCallback. The pointer

should have type TSLUserGeometryLoadCallback (which is a function pointer typedef).

The pointer will be added to a list; when user geometry is loaded, each function on the

list will be called until one returns non-NULL.

Setting a load callback function:

 TSLUserGeometryEntity::

 registerUserGeometryClientLoadCallback(loadUserGeometryCallback);

Here is a skeleton load callback function:

 static TSLClientUserGeometryEntity* loadUserGeometryCallback(

 TSLifstream& stream,

 int userGeometryID,

 bool& assumeOwnership)

 {

 // whether returned entities will be freed by MapLink:

 assumeOwnership = ...;

 switch (userGeometryID)

 {

 case RECTANGLE_USER_GEOMETRY_ID:

 ... // stream in client and return it

 ... // etc

 default:

 return NULL;

 }

 }

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 62 AUM1107

 Commercial in Confidence

10.3 Data Layers

The usual method of displaying fairly static data in MapLink is via the

TSLStandardDataLayer. This allows any of the geometric Entities to be displayed and

overlaid on top of a map. Of course, you can have any number of Data Layers displayed

on a single Drawing Surface, so you are not unduly restricted.

Unlike a TSLMapDataLayer, the TSLStandardDataLayer has no coordinate system of its

own. Instead, it uses the coordinate system of the Drawing Surfaces to which it is

attached. You should therefore be certain that if the TSLStandardDataLayer is

displayed on multiple Drawing Surfaces then they have consistent coordinate systems.

The TSLDrawingSurface assumes the coordinate system of the last TSLMapDataLayer

instance added to the surface. This is not necessary the topmost map data layer since

the order can be modified by the application.

Each TSLStandardDataLayer contains a TSLEntitySet that is used as a container for

the Data Layers Entities. To add Entities to the Data Layer, simply query the Data Layer

for its TSLEntitySet and then use the createXxxx methods of the Entity Set. The

Entities created will be added to Data Layer and displayed on the next redraw. If you

are using double buffering, you should call notifyChanged on the Data Layer to indicate

that the contents have changed.

The TSLStandardDataLayer has several storage methods available, for loading and

saving its contents via a file or buffer. The buffer or file that is created by this process is

a proprietary binary format that may be written to a database blob if required.

It is also possible to load and save the rendering and feature list configuration of the

TSLStandardDataLayer. These are the loadDataWithConfig and saveDataWithConfig

methods.

10.3.1 Utility Classes used during Entity Creation

There are several classes needed when creating Entities. These are various ways of

defining positions and sizes. In general, since the Entities are defined independent of

Drawing Surfaces, they use internal TMC coordinate space rather than any particular

map coordinate system. If necessary, the coordinate system conversion methods

available on Drawing Surfaces and map Data Layers could be used to transform positions

into the TMC coordinate space.

A single point is usually specified either by passing individual x, y parameters or by using

the TSLCoord utility class. Where an indeterminate number of points must be specified,

for example to create a polygon, then an instance of a TSLCoordSet class is most often

used. Another commonly used class is TSLEnvelope. This holds two coordinates

forming a rectangle and is most often used to pass extents and areas. Full details of the

methods available on these classes may be found in the detailed online SDK

documentation.

10.4 GARS, MGRS and Latitude/Longitude data layers

There are three data layers within MapLink to handle Latitude/Longitude called

TSLLatLongGridDataLayer, GARS Grid called TSLGARSDataLayer and Military Grid

Reference System (MGRS) and/or the Universal Transverse Mercator (UTM) grid called

TSLMGRSGridDataLayer.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 63 AUM1107

 Commercial in Confidence

10.4.1 The TSLMGRSGridDataLayer

The TSLMGRSGridDataLayer works in two modes, an "automatic" mode and a "single

zone" mode. The automatic mode is designed to give reasonable grid lines in all

projections, coordinate systems and at any resolution; However, being a general solution

it may not be exactly what the user wants. Some projections have very curved grid lines

away from the centre of the projection, and there may be errors towards the edge of the

map.

The single zone mode is designed to work with transverse Mercator maps in the zone

and band specified, although it also will work in other projections.

In general, if you know the MGRS grid zone and band, then the single zone will be more

appropriate. For whole world maps or those displayed before the user selects a zone

and band, it is best to use the automatic mode. It is possible to turn off the single zone

mode by giving it a zone of -1.

The TSLMGRSGridDataLayer may display MGRS, UTM and latitude/longitude grids. Which

grids are displayed is controlled by the line and text attributes given below.

The MGRS grid has special features to deal with Scandinavia and is widened to 12

degrees between 72 and 84 degrees north. The latitude / longitude grid incorporates

these special features as does the MGRS grid when displayed.

It is also possible to customise the grids displayed, for which grid lines are displayed, the

line styles, whether grid squares are named, whether grid lines are labelled and the

styles of the text displayed.

For the TSLMGRSGridDataLayer the following lines are configurable:

• "lon6Degree"

• "lonDegree"

• "lonMinute"

• "lat8Degree"

• "latDegree"

• "latMinute"

• "utm1km"

• "utm10km"

• "utm100km"

And the following text labels:

• "utmLabel"

• "mgrsLabel",

• "gridLineLabel"

• "degreeLineLabel"

For a grid line to be displayed it must have a colour greater than zero and a thickness

greater than zero. For a text label to be displayed, it must have a colour greater than

zero.

To configure which grids are displayed:

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 64 AUM1107

 Commercial in Confidence

An MGRS grid is displayed when the "utm1km", "utm10km" or "utm100km" grid lines

are displayed and the "mgrsLabel" is displayed.

A UTM grid is displayed if the MGRS grid is not displayed and the "utm1km",

"utm10km" or "utm100km" grid lines are displayed and the "utmLabel" is displayed.

A lat/long grid is displayed when any of the "lon6Degree", "lonDegree",

"lonMinute", "lat8Degree", "latDegree" or "latMinute" are displayed

irrespective of whether either or both the MRGS and UTM grids are displayed.

To create an MGRS Grid Data Layer:

 m_mgrsGridLayer = new TSLMGRSGridDataLayer ;

 m_mgrsGridLayer->setMapDataLayer(m_mapDataLayer);

To initialise the MGRS grid line styles:

 long utm1kmC, utm1kmS, utm1kmT ;

 long utm10kmC, utm10kmS, utm10kmT ;

 long utm100kmC, utm100kmS, utm100kmT ;

 TSLProfileHelper::lookupProfile("gridUtm1kmColour",&utm1kmC,

 getIDOfNearestColour("0,0,127"));

 TSLProfileHelper::lookupProfile("gridUtm10kmColour",&utm10kmC,

getIDOfNearestColour("0,0,192"));

 TSLProfileHelper::lookupProfile("gridUtm100kmColour",&utm100kmC,

getIDOfNearestColour("0,0,255"));

 TSLProfileHelper::lookupProfile("gridUtm1kmStyle",&utm1kmS, 6);

 TSLProfileHelper::lookupProfile("gridUtm10kmStyle",&utm10kmS, 3);

 TSLProfileHelper::lookupProfile("gridUtm100kmStyle",&utm100kmS, 1);

 TSLProfileHelper::lookupProfile("gridUtm1kmThickness",&utm1kmT, 1);

 TSLProfileHelper::lookupProfile("gridUtm10kmThickness",&utm10kmT, 1);

 TSLProfileHelper::lookupProfile("gridUtm100kmThickness",&utm100kmT, 2);

 m_mgrsGridLayer->setFeatureRendering("utm1km", 0, TSLRenderingAttributeEdgeColour,

 utm1kmC);

 m_mgrsGridLayer->setFeatureRendering("utm1km", 0, TSLRenderingAttributeEdgeStyle,

 utm1kmS);

 m_mgrsGridLayer->setFeatureRendering("utm1km", 0, TSLRenderingAttributeEdgeThickness,

 (double)utm1kmT);

 m_mgrsGridLayer->setFeatureRendering("utm10km", 0, TSLRenderingAttributeEdgeColour,

 utm10kmC);

 m_mgrsGridLayer->setFeatureRendering("utm10km", 0, TSLRenderingAttributeEdgeStyle,

 utm10kmS);

 m_mgrsGridLayer->setFeatureRendering("utm01km", 0, TSLRenderingAttributeEdgeThickness,

 (double)utm10kmT);

 m_mgrsGridLayer->setFeatureRendering("utm100km", 0, TSLRenderingAttributeEdgeColour,

 utm100kmC);

 m_mgrsGridLayer->setFeatureRendering("utm100km", 0, TSLRenderingAttributeEdgeStyle,

 utm100kmS);

 m_mgrsGridLayer->setFeatureRendering("utm100km", 0, TSLRenderingAttributeEdgeThickness,

 (double)utm100kmT);

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 65 AUM1107

 Commercial in Confidence

Similarly, the UTM grid lines and labels may be initialised if they are required to be

displayed. If the lat/long grid lines and labels are required, they should be initialised too.

10.4.2 The TSLLatLongGridDataLayer

The TSLLatLongGridDataLayer displays a latitude / longitude grid like that which may

be displayed by the TSLMGRSGridDataLayer. However, there are a few differences:

• The major grid lines are on 6-degree boundaries for both latitude and

longitude.

• Ticks on the grid lines show subdivisions.

• The special MGRS grid features dealing with Scandinavia are not included.

• There are different feature classes used. See the class documentation for

further details.

To initialise the MGRS grid text styles:

 initialiseLabel(m_mgrsGridLayer, "mgrsLabel);

 initialiseLabel(m_mgrsGridLayer, "gridLineLabel);

Where the method initialiseLabel sets the following attributes for the text:

TSLRenderingAttributeRenderLevel

TSLRenderingAttributeTextFont

TSLRenderingAttributeTextColour

TSLRenderingAttributeTextSizeFactor

TSLRenderingAttributeTextSizeFactorUnits

TSLRenderingAttributeTextHorizontalAlignment

TSLRenderingAttributeTextVerticalAlignment

TSLRenderingAttributeTextBackgroundMode

TSLRenderingAttributeTextBackgroundColour

TSLRenderingAttributeTextBackgroundEdgeColour

TSLRenderingAttributeTextBackgroundStyle

TSLRenderingAttributeTextOffsetUnits

TSLRenderingAttributeTextRotatable

TSLRenderingAttributeTextMinPixelHeight

TSLRenderingAttributeTextMaxPixelHeight

Add the TSLMGRSGridDataLayer to the surface and set its visibility.

 surface->addDataLayer(m_mgrsGridLayer, m_mgrsGridLayerName) ;

 surface->setDataLayerProps(m_mgrsGridLayerName, TSLPropertyVisible,

 m_mgrsGridLayerVisible) ;

To set the "single zone" mode:

 m_mgrsGridLayer->setZone(zone, band);

and back to "automatic" mode:

 m_mgrsGridLayer->setZone(-1, 0);

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 66 AUM1107

 Commercial in Confidence

10.4.3 The TSLGARSGridDataLayer

This draws a GARS (Global Area Reference System) grid.

More information about the GARs Grid can be found here:

http://earth-info.nga.mil/GandG/coordsys/grids/gars.html.

To create the TSLLatLongGridDataLayer:

 m_latLonGridLayer = new TSLLatLongGridDataLayer ;

 m_latLonGridLayer->setMapDataLayer(m_mapDataLayer);

To enable ticks on the grid lines showing divisions:

 m_latLonGridLayer->ticks(true);

http://earth-info.nga.mil/GandG/coordsys/grids/gars.html

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 67 AUM1107

 Commercial in Confidence

10.5 Additional Data Layers

10.5.1 Custom Data Layer

The Custom Data Layer concept allows Developers to draw complex content themselves.

Since MapLink 6.0 the concept has been extended to permit significantly more complex

layers to be created by a developer using MapLink Pro. The Oracle Spatial Database

Layer was created using these enhancements.

A Custom Data Layer has the following features:

• The layer can be a coordinate providing layer, for example a

TSLMapDataLayer is a coordinate providing layer.

• Support for editing of MapLink geometry.

• Ability to notify the Drawing Surface of the ideal Active layer (required for

3D and Accelerator SDK).

• Ability to contain other MapLink 2D layers and draw them when required
by the application. This is a concept similar to a TSLMapDataLayer which

can contain multiple layers (different resolutions).

• Access to the screen resolution and layer properties (TSLPropertyEnum).

• Ability to drawing data using Native drawing code of the

TSLRenderingInterface.

This functionality permits users to create their own layer to support, for example,

proprietary Web Map Servers (ones which do not conform to the OGC WMS Standard) or

display of Vector data from a WFS server (see the "WFS Client SDK").

The MapLink Pro team has extensive experience creating specific visualisation layers. If

you require a project specific layer then please contact Sales to discuss the possibility for

consultancy to help implement a layer.

10.5.2 Standard Data Layer

This is a standard component.

This layer is for user created geometry overlays. The layer is covered in section 11.

10.5.3 Dynamic Data Object Layer

This is a standard component.

This layer is designed for displaying large numbers of tracks. The layer is covered in

section 14.

10.5.4 Oracle Spatial Database Layer (Windows releases only)

This layer is an optional component.

This layer uses an Oracle Spatial database to display data. This layer makes use of the

MapLink DBIF SDK.

The layer is capable of being used with the Editor SDK thus providing edit facilities and

the capability to store the edits back to the database.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 68 AUM1107

 Commercial in Confidence

10.5.5 S57/S63 Data Layer (Windows releases only)

This layer is an optional component.

The layer follows the IHO S63 specification and provides an OEM the ability to create a

compliant solution for displaying S63 data.

10.5.6 CADRG Data Layer

This layer is an optional component.

The layer provides the ability to display CADRG/CIB data directly within an application

using the 2D Drawing surfaces including the Accelerator surfaces and the 3D Drawing

Surface.

10.5.7 WMS DataLayer

This is a standard component.

This layer allows you to display data from WMS Servers using 2D Drawing surfaces

including the Accelerator surfaces and the 3D Drawing Surface. See section 12.14.

10.5.8 WMTS DataLayer

This is a standard component.

This layer allows you to display data from WMS Servers using 2D Drawing surfaces

including the Accelerator surfaces.

10.5.9 KML DataLayer (Windows releases only)

This is a standard component

This layer allows you to display KML/KMZ data using 2D Drawing surfaces including the

Accelerator surfaces. Please see the sample for additional information.

10.5.10 Filter Data Layers (Windows releases only)

Filter Data Layers are essentially mini MapLink Studio layers that allow users to direct

import data, re-projection and save the results. The layer only offers a subset of data

processing options. See section 12.13.

If the filter you wish to use is not currently supported, please contact sales to discuss.

10.5.10.1 Raster Filter Data Layer

This is a standard layer.

This layer provides access to the Raster filter and the GeoTIFF filter.

10.5.10.2 NITF Filter Data Layer (Windows releases only)

This is an optional component.

This layer provides access to the NITF filter.

The NITF Filter Data Layer is configured in a similar way as the Raster Filter Data Layer.

Please see the previous section for an example.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 69 AUM1107

 Commercial in Confidence

10.5.11 Direct Import Data layer

This is a standard component.

This layer allows users to load a wide variety of data formats at runtime in a scalable

and performant manner. See section 14.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 70 AUM1107

 Commercial in Confidence

10.6 Rendering Configuration

Rendering is a term used for the graphical properties used to define the visual

appearance of an Entity. MapLink has very powerful and flexible facilities for

visualisation. Rendering may be defined in three different places - on individual Entities,

on Data Layers or on Drawing Surfaces. The first method is commonly called 'Entity

Based rendering' whilst the other methods are 'Feature Based rendering'.

Many of the rendering attributes refer to configuration files such as

‘tsllinestyles.dat’. See section 12.6 for further details about the contents of these

files.

10.6.1 Rendering Attributes

Wherever they are defined, the graphical properties are split into 5 categories and 3

types.

10.6.1.1 Generic Attributes

These are available on all Entities, regardless of type.

• TSLRenderingAttributeFeatureID: Signed 32-bit value, user defined

features may be from 1 to 16777215 (0xFFFFFF). This value is used to

lookup feature based rendering that may be applied to an Entity. The

default is 0.

• TSLRenderingAttributeRenderLevel: Valid values are -5 to +5. The

default is 0.

• TSLRenderingAttributeVisible: Boolean flag which indicates whether

the Entity should be drawn. The default is true.

• TSLRenderingAttributeSelectable: Boolean flag that indicates whether

the Entity can be found when selecting objects using the Editor SDK or

when searching the data using the find and query methods of the Drawing

Surface and Data Layer. Note that the Data Layer properties

TSLPropertyDetect and TSLPropertySelect are also considered when

searching and selecting. The default is true.

• TSLRenderingAttributeReadOnly: Boolean flag that indicates whether

the attributes defined on an Entity are read-only. This flag can be used to

inhibit modification through the Editor SDK. Of course, this attribute itself

cannot be read-only otherwise it cannot be turned off! The default is false.

10.6.1.2 Line Rendering Attributes

These are available on one-dimensional Entities such as Polylines and Arcs. They are:

• TSLRenderingAttributeEdgeColour: This value must be an index from

the tslcolours.dat file, the currently loaded map palette or a 24-bit

colour (see TSLColourHelper API Documentation). The default is –1,

which inhibits display of the Entity.

• TSLRenderingAttributeEdgeStyle: This value must be an index from the

tsllinestyles.dat file. The default is –1, which inhibits display of the Entity.

• TSLRenderingAttributeEdgeThicknessUnits: This value must be one of

the TSLDimensionUnits enum values. Use of this attribute allows the line

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 71 AUM1107

 Commercial in Confidence

thickness to be defined in device units, internal TMC units, map units or

points (1/72 of an inch). The default is TSLDimensionUnitsPixels.

• TSLRenderingAttributeEdgeThickness: This value is in the units defined

by the TSLRenderingAttributeEdgeThicknessUnits value. It is a

floating-point number so when applicable may hold fractional values. Note

that complex and multi-pass line styles have a minimum device unit

thickness in order to maintain a coherent display. If an attempt is made

to set a smaller thickness, or a variable thickness line produces a smaller

value, then the minimum is used. The default is –1, which inhibits display

of the Entity.

10.6.1.3 Area Rendering Attributes

These are available on two-dimensional Entities such as Polygons, Ellipses and

Rectangles. The rendering for the edges of areas are different from those used for lines

– this is because there may be both lines and area features assigned the same feature

code. The current area rendering attributes are:

• TSLRenderingAttributeFillColour: This value must be an index from

the tslcolours.dat file, the currently loaded map palette or a 24-bit

colour (see TSLColourHelper API Documentation). The default is –1,

which inhibits display of the fill potentially leaving just the edge of the

Entity.

• TSLRenderingAttributeFillStyle: This value must be an index from the

tslfillstyles.dat file. The default is –1, which inhibits display of the fill

potentially leaving just the edge of the Entity.

• TSLRenderingAttributeExteriorEdgeColour: This value must be an

index from the tslcolours.dat file, the currently loaded map palette or a

24 bit colour (see TSLColourHelper API Documentation). Note that this

also applies to the edges of any holes in a polygon. The default is –1,

which inhibits display of the edge potentially leaving just the fill of the

Entity.

• TSLRenderingAttributeExteriorEdgeStyle: This value must be an index

from the tslinestyles.dat file. Note that this also applies to the edges of

any holes in a polygon. The default is –1, which inhibits display of the

edge potentially leaving just the fill of the Entity.

• TSLRenderingAttributeExteriorEdgeThicknessUnits: This value must

be one of the TSLDimensionUnits enum values. Use of this attribute

allows the edge thickness to be defined in device units, internal TMC units,

map units or points (1/72 of an inch). Note that this also applies to the

edges of any holes in a polygon. The default is

TSLDimensionUnitsPixels.

• TSLRenderingAttributeExteriorEdgeThickness: This value is in the

units defined by the

TSLRenderingAttributeExteriorEdgeThicknessUnits value. It is a

floating point number so where relevant may hold fractional values. Note

that complex line styles have a minimum device unit thickness in order to

maintain a coherent display. If an attempt is made to set a smaller

thickness, or a variable thickness line produces a smaller value, then the

minimum is used. Note that this also applies to the edges of any holes in

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 72 AUM1107

 Commercial in Confidence

a polygon. The default is –1, which inhibits display of the edge potentially

leaving just the fill of the Entity.

• TSLRenderingAttributeBorderWidth: This value, in internal TMC units, is

the width of the internal or external border of a TSLBorderedPolygon

object. It has no effect on a normal polygon. This may be displayed in

addition to the standard edge of the polygon. A value of 0 indicates that

no border is displayed. Under these circumstances, a

TSLBorderedPolygon is displayed as a normal TSLPolygon.

• TSLRenderingAttributeBorderColour: This value must be an index from

the tslcolours.dat file, the currently loaded map palette or a 24 bit

colour (see TSLColourHelper API Documentation). It defines the colour

of the internal or external border of a TSLBorderedPolygon. The default is

–1, which inhibits display of the border and hence it is displayed as a

normal TSLPolygon.

10.6.1.4 Text Rendering Attributes

These are available on Text Entities. They are:

• TSLRenderingAttributeTextColour: This value must be an index from

the tslcolours.dat file, the currently loaded map palette or a 24 bit

colour (see TSLColourHelper API Documentation). The default is –1,

which inhibits display of the Entity.

• TSLRenderingAttributeTextFont: This value must be an index from the

tslfonts.dat file. The default is –1, which inhibits display of the text. Note

that the contents of the tslfonts.dat file are operating system dependant

and so may not give an exact match if displayed on different machines.

• TSLRenderingAttributeTextSizeFactor: This value defines the size or

height of the Text. It may also be adjusted by the height defined on the

TSLText object itself. This is a floating point number, whose units are

defined by TSLRenderingAttributeTextSizeFactorUnits. The default is

0, which inhibits display of the text.

• TSLRenderingAttributeTextSizeFactorUnits: This value is one of

TSLDimensionUnits enum, and determines how the

TSLRenderingAttributeTextSizeFactor value is interpreted. Typical

values allow the height of the text to be defined in points, Map Units,

internal TMC units or device units. An additional value for text and symbol

size factors is TSLDimensionUnitsScaleFactor. This makes MapLink

calculate the actual size of the object by multiplying the

TSLRenderingAttributeTextSizeFactor by the TMC height stored on the

Entity. This facility is included mainly for backwards compatibility and it is

recommended that new code does not use this. However, again for

backwards compatibility, the default is TSLDimensionUnitsScaleFactor!

• TSLRenderingAttributeTextMinPixelHeight: This value defines the

minimum height, in pixels, that the Text will be displayed at. It may be

used for clamping text height within certain boundaries to maintain

visibility. If a simple fixed pixel size is required, then use Size Factor Units

of Pixels and set the Size Factor to be the required pixel height. The

default value is 1. Note that the text may be made invisible before this

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 73 AUM1107

 Commercial in Confidence

value is reached, using the TSLDrawingSurface::setDataLayerProps

method and the TSLPropertyMinTextHeight property.

• TSLRenderingAttributeTextMaxPixelHeight: This value defines the

maximum height, in pixels, that the Text will be displayed at. It may be

used for clamping text height within certain boundaries to maintain

visibility. If a simple fixed pixel size is required, then use Size Factor Units

of Pixels and set the Size Factor to be the required pixel height. The

default value is 2000 pixels. Note that the text may be made invisible

before this value is reached, using the

TSLDrawingSurface::setDataLayerProps method and the

TSLPropertyMaxTextHeight property.

• TSLRenderingAttributeTextOffsetX: This is the horizontal offset of the

text, relative to its defined position, in addition to the alignment. This is

typically used for positioning of text that has been generated relative to a

point object in a map. The default value is 0. The value is interpreted

according to the value of the TSLRenderingAttributeTextOffsetUnits

property.

• TSLRenderingAttributeTextOffsetY: This is the vertical offset of the

text, relative to its defined position, in addition to the alignment. This is

typically used for positioning of text that has been generated relative to a

point object in a map. The default value is 0. The value is interpreted

according to the value of the TSLRenderingAttributeTextOffsetUnits

property.

• TSLRenderingAttributeTextOffsetUnits: This value is one of

TSLDimensionUnits enum, and determines how the

TSLRenderingAttributeTextOffsetX/Y values are interpreted. Typical

values allow the offset of the text to be defined in Map Units, internal TMC

units or device units. To keep positioning constant relative to any

underlying map or associated symbol, this is usually the same as the

SizeFactorUnits. The default is TSLDimensionUnitsUndefined, which in

this case is interpreted as pixels.

• TSLRenderingAttributeTextVerticalAlignment: Value is one of

TSLVerticalAlignment enum. This value is only used if no alignment is

stored on the Entity. This is because some map data sources, such as

Ordnance Survey NTF, include topographic text with defined alignments

and rotations. For this rendering attribute to have any effect, the

alignment stored on the Entity must be TSLVerticalAlignmentUndefined.

• TSLRenderingAttributeTextHorizontalAlignment: Value is one of

TSLHorizontalAlignment enum. This value is only used if no alignment is

stored on the Entity. This is because some map data sources, such as

Ordnance Survey NTF, include topographic text with defined alignments

and rotations. For this rendering attribute to have any effect, the

alignment stored on the Entity must be

TSLHorizontalAlignmentUndefined.

TSLRenderingAttributeTextBackgroundMode: Value is one of

TSLTextBackgroundMode enum. This attribute allows text to be rendered with

some form of background. Currently this may be in the form of a dynamically

resizing rectangle, or a single pixel outline or halo around the text.

The rectangle fill colour, fill style and edge colour may be configured using other

rendering attributes but will always have a solid edge. The rectangle will

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 74 AUM1107

 Commercial in Confidence

dynamically resize to fit around the text and will automatically compensate for

multiple lines, alignment and text size changes and will rotate will the text.

The halo effect may be applied to either raster or Hershey vector text and will

always be a single pixel in the configured text background colour. This effect

renders the text multiple times, so it can have a performance hit. We

recommend that you verify the performance on your target system.

The default value is TSLTextBackgroundModeNone.

• TSLRenderingAttributeTextBackgroundColour: This value must be an

index from the tslcolours.dat file, the currently loaded map palette or a

24-bit colour (see TSLColourHelper API Documentation). When using

rectangle backgrounds, this attribute defines the fill colour. When using

halo backgrounds, this attribute defines the outline colour. The default is

–1, which inhibits display of the background.

• TSLRenderingAttributeTextBackgroundStyle: Value is index from

tslfillstyles.dat file. This attribute is ignored for halo backgrounds but

defines the fill style for rectangle backgrounds. The default is –1, which

inhibits display of the background fill.

• TSLRenderingAttributeTextBackgroundEdgeColour: This value must be

an index from the tslcolours.dat file, the currently loaded map palette

or a 24-bit colour (see TSLColourHelper API Documentation). The default

is –1, which inhibits display of any background rectangle edge.

• TSLRenderingAttributeTextFixedHeight: Deprecated, use

TSLRenderingAttributeTextScaleFactor with

TSLRenderingAttributeTextScaleFactorUnits of

TSLDimensionUnitsPixels instead. If used, this attribute will force the

text to be drawn with the Text Entity height attribute defining the pixel

size.

• TSLRenderingAttributeTextRotatable: This boolean flag enables or

disables rotation of text. If the flag is false, then the rotation of the text

Entity and the Drawing Surface are both ignored when rendering the text.

This is often used to inhibit rotation that has been added to map text due

to coordinate system transformations. The default value is true.

Many of these attributes are interdependent.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 75 AUM1107

 Commercial in Confidence

10.6.1.5 Symbol Rendering Attributes

These are available on Symbol Entities. They are:

• TSLRenderingAttributeSymbolColour: This value must be an index from

the tslcolours.dat file, the currently loaded map palette or a 24-bit

colour (see TSLColourHelper API Documentation). The default is –1,

which inhibits display of the Entity.

• TSLRenderingAttributeSymbolStyle: This value must be an index from

the tslsymbols.dat file. The default is –1, which inhibits display of the

symbol. Note that the icon symbols defined in the standard tslsymbols.dat

file cannot currently be displayed on X11 based systems.

• TSLRenderingAttributeSymbolSizeFactor: This value defines the size or

height of the Symbol. It may also be adjusted by the height defined on

the TSLSymbol object itself. This is a floating-point number, whose units

are defined by TSLRenderingAttributeSymbolSizeFactorUnits. The

default is 0, which inhibits display of the Symbol.

• TSLRenderingAttributeSymbolSizeFactorUnits: This value is one of

TSLDimensionUnits enum and determines how the

TSLRenderingAttributeSymbolSizeFactor value is interpreted. Typical

values allow the height of the Symbol to be defined in points, Map Units,

internal TMC units or device units. An additional value for text and symbol

size factors is TSLDimensionUnitsScaleFactor. This makes MapLink

calculate the actual size of the object by multiplying the

TSLRenderingAttributeSymbolSizeFactor by the TMC height stored on

the Entity. This facility is included mainly for backwards compatibility and

The size of the font used to render the text is calculated using the following

pseudo-code:

 if (obsolete fixed size flag is true)

 {

 sizeInPixels = Entity size

 }

 else

 {

 switch (textSizeFactorUnits)

 {

 case pixels :

 sizeInPixels = size factor

 case map units :

 sizeInPixels = (size factor * tmcPerMU) / tmcPerDU

 case scale factor :

 sizeInPixels = (Entity size * size factor) / tmcPerDU

 }

 }

 if (sizeInPixels < minHeight)

 sizeInPixels = minHeight ;

 else if (sizeInPixels > maxHeight)

 sizeInPixels = maxHeight ;

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 76 AUM1107

 Commercial in Confidence

it is recommended that new code does not use this. However, again for

backwards compatibility, the default is TSLDimensionUnitsScaleFactor!

• TSLRenderingAttributeSymbolMinPixelHeight: This value defines the

minimum height, in pixels, that the Symbol will be displayed at. It may be

used for clamping Symbol height within certain boundaries to maintain

visibility. If a simple fixed pixel size is required, then use Size Factor Units

of Pixels and set the Size Factor to be the required pixel height. The

default value is 1.

• TSLRenderingAttributeSymbolMaxPixelHeight: This value defines the

maximum height, in pixels, that the Symbol will be displayed at. It may

be used for clamping Symbol height within certain boundaries to maintain

visibility. If a simple fixed pixel size is required, then use Size Factor Units

of Pixels and set the Size Factor to be the required pixel height. The

default value is 2000 pixels.

• TSLRenderingAttributeSymbolRotatable: Value is one of

TSLSymbolRotation enum. This is more than a simple boolean flag, in

order to maintain backwards compatibility. The tslsymbols.dat file

contains a flag for each symbol indicating whether by default it should be

rotatable. For example, a lighthouse symbol should remain vertical,

whereas a flow arrow must be rotated to indicate the direction of flow. If

your application is using the symbols in an unusual way – for example

using a (non-rotatable) “airport” symbol to represent a moving “aircraft”

track, then you may wish to override the standard settings.

The TSLSymbolRotation enum allows you to specify that the symbol will be

rotatable, not rotatable, or that the default rotatability defined in the

tslsymbols.dat file should be used.

• TSLRenderingAttributeSymbolFixedSize: Deprecated, use

TSLRenderingAttributeSymbolScaleFactor with

TSLRenderingAttributeSymbolScaleFactorUnits of

TSLDimensionUnitsPixels instead. If used, this attribute will force the

Symbol to be drawn with the Entity height attribute defining the pixel size.

• TSLRenderingAttributeRasterSymbolScalable: Value is one of

TSLRasterSymbolScalability enum. This is more than a simple boolean

flag, in order to maintain backwards compatibility. By default, raster

symbols are not scalable and are displayed at their relevant pixel size

regardless of the calculated height of the symbol. This rendering attribute

allows an application to enable scaling for this raster symbol.

• TSLRenderingAttributeSymbolFontCharacter: Symbols may be

characters from a font. The font is referenced via an entry in the

tslsymbols.dat file. For such symbol styles, this rendering attribute

defines the character from the font to be displayed.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 77 AUM1107

 Commercial in Confidence

10.6.1.6 Raster Icon Symbols

Some of the symbols defined in the default tslsymbols.dat file are raster icons. These

are standard windows .ico files. These have certain limitations which you should be

aware of before using them:

• They are usually drawn fixed size. Regardless of the Symbol size

rendering attributes, they will always be drawn as they are defined. This

behaviour can be overridden using the

TSLRenderingAttributeRasterSymbolScalable attribute.

• They cannot be rotated, and any rotation applied to the Symbol will be

ignored.

• A .ico file may contain multiple icons. Only the first one will be used.

• The .ico file can contain icons of any size, but due to issues in the

underlying Windows API, there will be a significant performance hit if

either the width or height values are not multiples of 8. The transparency

facility of the icon format can be used to mask out any additional pixels.

• Icon Symbols may be displayed on X11 based platforms (See the X11

Release Notes).

• The extent of the Symbol will include the full size of the icon, not just the

non-masked areas.

10.6.1.7 Other Raster Symbols

It is possible to use other custom raster objects as symbols. These have certain

limitations which you should be aware of before using them:

The size of the symbol used to render the text is calculated using the following

pseudo-code:

 if (obsolete fixed size flag is true)

 {

 sizeInPixels = Entity size

 }

 else

 {

 switch (symbolSizeFactorUnits)

 {

 case pixels :

 sizeInPixels = size factor

 case map units :

 sizeInPixels = (size factor * tmcPerMU) / tmcPerDU

 case scale factor :

 sizeInPixels = (Entity size * size factor) / tmcPerDU

 }

 }

 if (sizeInPixels < minHeight)

 sizeInPixels = minHeight ;

 else if (sizeInPixels > maxHeight)

 sizeInPixels = maxHeight ;

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 78 AUM1107

 Commercial in Confidence

• They are usually drawn fixed size. Regardless of the Symbol size

rendering attributes, they will always be drawn as they are defined. This

behaviour can be overridden using the

TSLRenderingAttributeRasterSymbolScalable attribute.

• Raster symbol rotation is only supported by the OpenGL 2D drawing

surface. When using any other type of drawing surface rotation applied to

the symbol will be ignored.

• When using raster symbols containing transparency, the TSLNTSurface

and TSLMotifSurface may convert the transparency information in the

image to an on/off mask.

• The extent of the Symbol will include the full size of the image, not just

the non-masked areas.

10.6.2 Entity Based Rendering

Each Entity within MapLink may have its own unique rendering defined. This takes

precedence over any Feature Based Rendering that may have been configured and is

typically used for overlays in a TSLStandardDataLayer and for Entities created using the

Editor SDK.

Entity Based Rendering is configured using the TSLEntity::setRendering methods.

These are a group of three overloaded methods with a single simple interface. The

methods take an enumeration defining the graphical property to set, along with the new

value. There is also a parallel set of query methods.

10.6.3 Feature Based Rendering

Maps often contain lots of Entities that need to be rendered in a similar fashion. Feature

Based Rendering allows the rendering styles to be defined once only for a particular map

feature type and then specific Entities to be tagged with an identifier to indicate what

feature type it represents. This saves memory and improves performance since the

rendering styles need only be stored once and optimisations can be made to the low-

level graphics calls when all features of a particular type are drawn together.

As an example of Feature Based Rendering, MapLink may be told that features of type “A

Road” are to be drawn as red lines with black edges, and individual Entities are tagged

as being an “A Road”. In a map, the rendering is usually configured within MapLink

Studio, using the Feature Book. In a run-time application, it may be configured on the

TSLDrawingSurface or on the TSLDataLayer. Wherever Feature Based Rendering is

configured, it uses the same setFeatureRendering methods. These are a group of

three overloaded methods with a single simple interface. The methods take the feature

name, feature ID and an enumeration defining the graphical property to set, along with

the new value. There is also a parallel set of query methods. Note that the feature

name is optional. If NULL is passed, the feature ID is used.

10.6.4 Determining the Source of Rendering Attributes

As described above, there are multiple places to define the Rendering Attributes of an

Entity. MapLink must determine where to fetch the attributes from at run-time.

When rendering an Entity, MapLink first of looks to see if there is any Entity Based

Rendering defined on the Entity. If so, then that is used. If none exists, then the

Feature ID stored on the Entity is used to search for Feature Based Rendering on the

TSLDrawingSurface currently being drawn. If none exists on the TSLDrawingSurface

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 79 AUM1107

 Commercial in Confidence

then the TSLDataLayer is searched. If there is also no Feature Based Rendering defined

there, then the process begins again starting at the parent of the Entity - the

TSLEntitySet that contains it.

If MapLink cannot determine the Rendering Attributes, the Entity is not drawn. All

Rendering Attributes for an Entity will be taken from the same place. For example, it is

not possible to define the Edge Colour of a polyline using Entity Based Rendering and the

Edge Style using Feature Based Rendering.

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 80 AUM1107

 Commercial in Confidence

10.6.5 Determining Styles and Font Indices

Many different symbols, fonts, line styles and fill styles are supplied with MapLink. The

easiest way to see the available styles, and to determine their index, is to look in the

MapLink Studio Feature Book.

• Start a new map project and invoke the Feature Book.

• Select the Reference Section, Layer Overview Feature.

• Each index-based property in the Feature Properties Dialog shows a

sample of the current rendering, a description and the index for that style.

You may need to make the Feature Properties Dialog wider to see the

index – especially for some of the complex line styles which can have very

long descriptions.

• Using the Feature Properties Dialog, browse the available styles to find an

appropriate one and select it. Some properties display the index in the

combo box used for selection. Other properties such as colour and symbol

style do not display the index during selection.

• The Feature Properties Dialog will be updated to show the index of your

chosen style.

• Where a particular style has multiple colours displayed, such as vector

symbols or complex line styles, the configurable colour is displayed as red

in the sample.

10.6.6 Minimum Attribute Requirements

Many of the default values inhibit display of the Entity until explicitly set by the user. To

enable display of the various Entity types, the following rendering attributes must be set

– either through Entity Based Rendering or through Feature Based Rendering:

• TSLPolyline and TSLArc: Requires style, colour and thickness to be set.

By default, the thickness is in pixels.

• TSLPolygon, TSLEllipse, TSLRectangle and TSLBorderedPolygon: A

visible fill requires style and colour to be set. A visible edge requires style,

colour and thickness to be set. By default, the thickness is in pixels.

• TSLText: Requires a height stored on the Entity of > 0, a font, a colour

and a size factor. The default size factor units will multiply the Entity

height by the size factor to determine the TMC height of the Text.

• TSLSymbol: Requires a style, colour and size factor. The default size factor

units will multiply the Entity height by the size factor to determine the TMC

height of the Symbol.

10.6.7 Why Can’t I See My Object?

One of the most frustrating things that can happen when developing an application is

when you expect something to happen, but it doesn’t. A typical example of this in a

MapLink application is an Entity not appearing when it is created. There can be many

reasons for the non-appearance and it can be difficult to track down. Here is a list of the

most common reasons:

• The Entity was never actually created. This can occur if invalid arguments

are passed to the create method call – such as an empty string being

Commercial in Confidence

 Geometry and Overlays

© 2021 Envitia Ltd 81 AUM1107

 Commercial in Confidence

passed to createText or a self-intersecting coordinate set being passed to

createPolygon. Check the return value from the create call and look at

the contents of the error stack to see what may have gone wrong.

• The Entity has no Rendering Attributes associated with it. These can

either be configured on the Entity itself, or on the Data Layer or Drawing

Surface via Feature Based Rendering. See Section 11 for code examples

of some simple rendering configurations. The Geometry Creation sample

installed with MapLink gives examples of every available Rendering

Attribute for each primitive type and allows you to experiment with them.

Note that this sample also includes access to obsolete attributes which

may clash with other newer ones!

• The Entity has insufficient Rendering Attributes associated with it. Even

though an Entity may have some attributes, they may not be enough to

create a valid rendition. See Section 10.6.6 for a list of the minimum set

of Rendering Attributes for each primitive type.

• The associated Rendering Attributes are illegal. This means that an index

is not found in the associated configuration file. For example, a colour

index that is not in the current palette, a line style index that does not

exist in tsllinestyles.dat, a symbol style index that specifies an icon

symbol may be illegal on X11 as are some fonts (See X11 Release Notes).

Check the contents of the configuration files (see Section 12.6) or validate

the styles in MapLink Studio.

• Would the Rendering Attributes give a visible representation anyway?

Some of the line styles and fill styles give no rendition – such as hollow,

highly translucent or very sparse bitmap fill styles.

• Is the Entity in a TSLEntitySet that is associated with a Data Layer?

Free-floating Entities are never displayed. They need to be inserted into a

TSLStandardDataLayer. Is the Data Layer associated with the Drawing

Surface?

• Has notifyChanged been called on the Data Layer after the Entity is

created? Without this, the Data Layer does not invalidate any associated

buffer and so the old contents are used when drawing an unchanged view

extent.

• Is the Entity, its parent Entity Sets and associated Data Layer all visible?

An Entity can be hidden using TSLRenderingAttributeVisible and a

Data Layer can be hidden using TSLPropertyVisible.

• Have the Entity or Data Layer been decluttered? An Entity can be

decluttered and thereby hidden, using the setDeclutterStatus method of

the Drawing Surface. A Data Layer can be hidden according to zoom level

using the TSLPropertyMinZoomDisplay and TSLPropertyMaxZoomDisplay

properties.

• Is the Drawing Surface actually viewing the area containing the Entity?

For Text primitives, have they been hidden because they are too small or too big? These

limits default to 3 pixels and 200 pixels. They can be configured using

TSLPropertyMinTextHeight and TSLPropertyMaxTextHeight.

Commercial in Confidence

 Walkthrough 3 – Adding a Simple Vector

Overlay

© 2021 Envitia Ltd 82 AUM1107

 Commercial in Confidence

11 Walkthrough 3 – Adding a Simple Vector Overlay

In this section, you will take the application that has been developed in the earlier

walkthroughs and add an overlay. Within this overlay you can create simple vector

objects to be displayed using Entity Based Rendering. You will also create an example of

a Symbol displayed using Feature Based Rendering.

11.1 Interaction Mode Modifications

It is obvious that the existing interaction mode in the Hello Globe application is

insufficient to allow complex chains of points to be built up so we will try and keep things

simple. We will need to make some modifications to allow different kinds of Entities to

be created without adding a lot of additional code and logic within the button handlers of

the View. A further complication is that your application may be MDI and therefore have

many Documents and Views open at the same time.

With these issues in mind we will make the following changes:

• Add a TSLStandardDataLayer to the Document.

• Add a new ‘Overlays’ menu with options for creating various Entities.

• Add event handlers for the menu to the Document class. The event will be

sent to the currently active Document.

• Store the currently selected primitive type. This should be stored statically

for MDI applications.

• In the View button handlers check for the Control key being pressed. If

so, then call the associated document to create the primitive type and if

successful redraw the view. Do this on release.

• In the document class, instantiate the appropriate primitive.

This is obviously a very simplified interaction and has limited encapsulation. For more

complex, highly interactive primitive creation and manipulation facilities, Envitia provides

the Editor SDK and the companion Spatial SDK. See later sections for details about how

to integrate these into an application.

We will assume that the overlay is only available when a map is loaded.

11.2 Adding a TSLStandardDataLayer

Simple vector overlays are usually stored in a TSLStandardDataLayer. This will need to

be added to the document class. It should be created and destroyed where appropriate

and added to the TSLDrawingSurface when the document and view are bound together.

Commercial in Confidence

 Walkthrough 3 – Adding a Simple Vector

Overlay

© 2021 Envitia Ltd 83 AUM1107

 Commercial in Confidence

The overlay layer should only be created after a map has been successfully loaded and

should be destroyed when the map layer is destroyed.

11.3 Adding the Overlay Menu and Handlers

This menu will allow the user to select which type of Entity will be created on a button

press.

In the Document class definition, add a declaration of the Standard Data Layer just

after the Map Data Layer:

TSLMapDataLayer * m_mapDataLayer ;

TSLStandardDataLayer * m_stdDataLayer ; // This line added

The new class variable should be initialised to NULL in the Document constructor.

CHelloGlobeDoc::CHelloGlobeDoc()

 : m_mapDataLayer(NULL), m_stdDataLayer(NULL)

{

}

In the Document OnOpenDocument method, instantiate a TSLStandardDataLayer if

the map is successful:

 if (!m_mapDataLayer->loadData(lpszPathName))

 {

 // Error handling as before

 return FALSE ;

 }

 m_stdDataLayer = new TSLStandardDataLayer() ; // This line added

In the Document DeleteContents method, add the following code to delete the

overlay layer:

 if (m_stdDataLayer)

 {

 m_stdDataLayer->destroy() ;

 m_stdDataLayer = NULL ;

 }

Modify the Document addToSurface method to add the extra layer:

 if (!m_mapDataLayer || !m_stdDataLayer || !drawingSurface)

 return false ;

 bool sts = drawingSurface->addDataLayer(m_mapDataLayer, "map") ;

 if (sts)

 sts = drawingSurface->addDataLayer(m_stdDataLayer, "overlay") ;

 return sts ;

Use the Dev Studio Resource editor to create a menu called Overlays, with options

for Text, Symbol, Polygon, Line and Feature.

You may also wish to add toolbar icons to invoke the menu items.

Commercial in Confidence

 Walkthrough 3 – Adding a Simple Vector

Overlay

© 2021 Envitia Ltd 84 AUM1107

 Commercial in Confidence

We need somewhere to store the current overlay type selection. For MDI applications,

we will store this globally to avoid confusing the user when swapping between currently

open documents. Initialise it to the ID of one of the Overlay menu items.

Now we need to add COMMAND handlers to update the chosen overlay type on a user

selection.

Try building your application. At this point you should have the user interface working,

but no primitive creation happening. Check that the m_overlayType variable is set

correctly when you select each menu item or toolbar button and that the menu items are

ticked correctly.

11.4 Adding the Overlay Creation Interface

With the user interface working, we now need to add the back-end methods which

create the Entities. These will be triggered from the View, but to maintain encapsulation

should actually be in the Document.

In the Document class definition, add a declaration for a static integer to hold the

currently selected primitive and initialise it appropriately in the Document .cpp file

// This line added in the Document class header, private section

static int m_overlayType ; // This line added in class header

// This line added in the Document .cpp file

int CHelloGlobeDoc::m_overlayType = ID_OVERLAYS_TEXT ;

Use Class Wizard to add COMMAND handlers for the overlay menu items to the

Document and in each handler set the m_overlayType variable. You could use a

range command handler and only have one method, but for simplicity we have

added one per menu item. You should also add UPDATE_COMMAND_UI handlers to

provide some feedback to the user about which overlay type is selected. The

handlers for Polygons are shown below. Add them for each of the menu entries

void CHelloGlobeDoc::OnOverlaysPolygon()

{

 m_overlayType = ID_OVERLAYS_POLYGON ;

}

void CHelloGlobeDoc::OnUpdateOverlaysPolygon(CCmdUI *pCmdUI)

{

 pCmdUI->SetCheck(pCmdUI->m_nID == m_overlayType) ;

}

Commercial in Confidence

 Walkthrough 3 – Adding a Simple Vector

Overlay

© 2021 Envitia Ltd 85 AUM1107

 Commercial in Confidence

Add a public method to the Document, called createOverlay. This should return a boolean

value which indicates whether the creation was successful. As a parameter it will take the
Drawing Surface and the position at which the overlay should be created.

Create other, private methods, which provide the implementation for creating each overlay type.
These will have the same signature as createOverlay and should be called from it according

to the current value of m_overlayType. The code fragment below shows the implementation of

createOverlay and a dummy implementation of the text method.

 bool CHelloGlobeDoc::createOverlay(long x,long y,TSLDrawingSurface *ds)

 {

 switch (m_overlayType)

 {

 case ID_OVERLAYS_LINE : return createPolyline(x, y, ds) ;

 case ID_OVERLAYS_POLYGON : return createPolygon(x, y, ds) ;

 case ID_OVERLAYS_TEXT : return createText(x, y, ds) ;

 case ID_OVERLAYS_SYMBOL : return createSymbol(x, y, ds) ;

 case ID_OVERLAYS_FEATURE : return createFeature(x, y, ds) ;

 }

 return false ;

 }

 bool CHelloGlobeDoc::createText(long x,long y,TSLDrawingSurface*ds)

 {

 return false ;

 }

Commercial in Confidence

 Walkthrough 3 – Adding a Simple Vector

Overlay

© 2021 Envitia Ltd 86 AUM1107

 Commercial in Confidence

11.5 Triggering the Overlay Creation

In the View class LButtonUp handler, we should call the createOverlay method if the

Control button is pressed.

11.6 Creating the Text Overlay

Build the application and ensure that the create methods are being triggered when the

Control – Left Mouse Button combination is used.

Now we will create some text at the button click location and if successful return true.

The success return status will force the View to redraw itself.

The key points of this code are

• The Text Entity is created in the Entity Set of the overlay Standard Data

Layer. If the static TSLText::create method was used, then the Text

Entity would not be attached to any Drawing Surface and hence would

never be displayed.

void CHelloGlobeView::OnLButtonUp(UINT nFlags, CPoint point)

{

 if (m_drawingSurface)

 {

 if (nFlags & MK_CONTROL)

 {

 TSLTMC x, y ;

 m_drawingSurface->DUToTMC(point.x, point.y, &x, &y) ;

 if (GetDocument()->createOverlay(x, y, m_drawingSurface))

 InvalidateRect(0, FALSE) ;

 }

 else if (abs(. . . . /* Rest of method the same */))

Replace the dummy implementation of createText with the following:

 TSLEntitySet * es = m_stdDataLayer->EntitySet() ;

 TSLText * txt = es->createText(0, x, y, "Hello World") ;

 if (!txt)

 return false ; // Return failure if text could not be created

 TSLStyleID black = TSLDrawingSurface::getIDOfNearestColour(0, 0, 0) ;

 // Set the rendering of the text to be black, Arial, 25 pixels high

 txt->setRendering(TSLRenderingAttributeTextFont, 1) ;

 txt->setRendering(TSLRenderingAttributeTextColour, black) ;

 txt->setRendering(TSLRenderingAttributeTextSizeFactor, 25.0) ;

 txt->setRendering(TSLRenderingAttributeTextSizeFactorUnits,

 TSLDimensionUnitsPixels) ;

 // Tell the layer that its contents have changed

 m_stdDataLayer->notifyChanged(true) ;

 return true ;

Commercial in Confidence

 Walkthrough 3 – Adding a Simple Vector

Overlay

© 2021 Envitia Ltd 87 AUM1107

 Commercial in Confidence

• The createText method of the Entity Set returns false if the creation

failed. If this happens, examine the contents of the error stack to

determine why. With Text, it is usually because the string is empty.

• You can lookup colour indices in the currently loaded palette using the

static TSLDrawingSurface::getIDOfNearestColour method. Note: You

may wish to use 24bit RGB colour (see TSLColourHelper API

Documentation).

• Ensure that you set the minimum attributes required, as specified in

section 10.6.6. Other attributes are optional.

• Always call notifyChanged after completing a sequence of modifications to

the layer. If this is not called, then MapLink will assume that any buffer

associated with the Drawing Surface or Data Layer are up to date until the

next change of viewing area.

11.7 Creating the Symbol Overlay

The example Symbol that we shall create will be sized in Map Units. This means that it

will scale according to the current zoom factor. It is very dependent upon the current

map loaded. We are assuming that the sample Dorset map is loaded. This may be

found in:

<MAPLINK_HOME>\Samples\MapForSamples\Dorset\Dorset.map

Many different symbols are supplied with MapLink. Use the method described in section

10.6.5 to determine an appropriate index.

Replace the dummy implementation of createSymbol with the following:

 TSLEntitySet * es = m_stdDataLayer->EntitySet() ;

 TSLSymbol * symbol = es->createSymbol(0, x, y) ;

 if (!symbol)

 return false ;

 // Create a green star, 1000m high.

 // This looks sensible on the Dorset map!

 TSLStyleID green= TSLDrawingSurface::getIDOfNearestColour(0, 255, 0) ;

 symbol->setRendering(TSLRenderingAttributeSymbolStyle, 14) ;

 symbol->setRendering(TSLRenderingAttributeSymbolColour, red) ;

 symbol->setRendering(TSLRenderingAttributeSymbolSizeFactor,1000.0);

 symbol->setRendering(TSLRenderingAttributeSymbolSizeFactorUnits,

 TSLDimensionUnitsMapUnits) ;

 // Tell the layer that its contents have changed

 m_stdDataLayer->notifyChanged(true) ;

 return true ;

Commercial in Confidence

 Walkthrough 3 – Adding a Simple Vector

Overlay

© 2021 Envitia Ltd 88 AUM1107

 Commercial in Confidence

11.8 Creating the Polygon Overlay

Unlike Text and Symbol Entities, Polygons are defined with many coordinates defining

the boundary of the polygon. This list of coordinates must be created via the

TSLCoordSet class and passed to the Polygon create method.

The example below uses the Drawing Surface conversion routines to determine the

current zoom factor and then creates a polygon at a specific screen size for the current

zoom factor. Zooming in or out will make the Polygon appear larger or smaller.

11.9 Creating the Polyline Overlay

Polylines use the same mechanism as Polygons to specify the list of coordinates that

should be used.

The example below uses the Drawing Surface conversion routines to determine the

current zoom factor and then creates a Polyline at a specific size for the current map –

i.e. the Polyline is drawn in real-world units. It also uses the Thickness Units Rendering

Replace the dummy implementation of createPolygon with the following:

 TSLEntitySet * es = m_stdDataLayer->EntitySet() ;

 // Create a coordinate list forming a triangle around the position

 // Use the Drawing Surface to calculate the coordinates

 // We will make our triangle 25 pixels either side of the position

 // Note that the pixels are at the current zoom factor - the polygon

 // is always completely scalable

 TSLCoordSet * coords = new TSLCoordSet() ;

 if (!coords)

 return false ;

 double tmcPerDU = ds->TMCperDU() ;

 coords->add(x - 25 * tmcPerDU, y - 25 * tmcPerDU) ;

 coords->add(x + 25 * tmcPerDU, y - 25 * tmcPerDU) ;

 coords->add(x, y + 25 * tmcPerDU) ;

 // Hand ownership of the coordset to the polygon

 TSLPolygon * poly = es->createPolygon(0, coords, true) ;

 if (!poly)

 return false ;

 TSLStyleID yellow = TSLDrawingSurface::getIDOfNearestColour(255, 255, 0

);

 TSLStyleID black = TSLDrawingSurface::getIDOfNearestColour(0, 0, 0) ;

 poly->setRendering(TSLRenderingAttributeFillStyle, 1) ;

 poly->setRendering(TSLRenderingAttributeFillColour, yellow) ;

 poly->setRendering(TSLRenderingAttributeEdgeStyle, 1) ;

 poly->setRendering(TSLRenderingAttributeEdgeColour, black) ;

 poly->setRendering(TSLRenderingAttributeEdgeThickness, 1.0) ;

 // Tell the layer that its contents have changed

 m_stdDataLayer->notifyChanged(true) ;

 return true ;

Commercial in Confidence

 Walkthrough 3 – Adding a Simple Vector

Overlay

© 2021 Envitia Ltd 89 AUM1107

 Commercial in Confidence

Attribute to specify the thickness of the line in real-world units. Zooming in or out will

make the Polygon appear larger or smaller and change the displayed thickness of the

line. The values chosen are appropriate for the sample Dorset map.

11.10 Creating the Feature Based Symbol Overlay

The previous examples have used Entity Based Rendering, in which every Entity has its

own definition of Rendering Attributes. As discussed in Section 10.6.3, MapLink also has

the capability to specify the Rendering Attributes of a Feature type on the Data Layer or

Drawing Surface and on the individual Entity specify which Feature the Entity represents.

To do this, we must first configure the Data Layer and specify the rendering.

Replace the dummy implementation of createPolygon with the following:

 TSLEntitySet * es = m_stdDataLayer->EntitySet() ;

 // Create a coordinate list forming a triangle around the position

 // Use the Drawing Surface to calculate the coordinates

 TSLCoordSet * coords = new TSLCoordSet() ;

 if (!coords)

 return false ;

 // Make a triangle, 1km either side of the specified position

 double tmcPerMU = ds->TMCperMU() ;

 coords->add(x - 1000 * tmcPerMU, y + 1000 * tmcPerMU) ;

 coords->add(x, y - 1000 * tmcPerMU) ;

 coords->add(x + 1000 * tmcPerMU, y + 1000 * tmcPerMU) ;

 // Hand ownership of the coordset to the polygon

 TSLPolyline * poly = es->createPolyline(0, coords, true) ;

 if (!poly)

 return false ;

 // Use MapUnit thickness so the line thickness scales as we zoom

 // in/out

 // Set it to 20m. Complex line styles - like style 48 have thickness

 // clamping applied automatically to avoid performance

 // or aesthetic problems

 TSLStyleID yellow = TSLDrawingSurface::getIDOfNearestColour(255, 255, 0) ;

 poly->setRendering(TSLRenderingAttributeEdgeStyle, 48) ;

 poly->setRendering(TSLRenderingAttributeEdgeColour, yellow) ;

 poly->setRendering(TSLRenderingAttributeEdgeThickness, 20.0) ;

 poly->setRendering(TSLRenderingAttributeEdgeThicknessUnits,

 TSLDimensionUnitsMapUnits) ;

 // Tell the layer that its contents have changed

 m_stdDataLayer->notifyChanged(true) ;

 return true ;

Commercial in Confidence

 Walkthrough 3 – Adding a Simple Vector

Overlay

© 2021 Envitia Ltd 90 AUM1107

 Commercial in Confidence

Next, we implement the createFeature method to create the symbol referencing the

Feature ID that we have just created.

Congratulations! You can now create vector overlays!

After the Standard Data Layer has been constructed, define some Feature Rendering

for use during the Feature creation and rendering.

In the Document OnOpenDocument method, add the following code:

 TSLStyleID black = TSLDrawingSurface::getIDOfNearestColour(0, 0, 0) ;

 // Make up a feature name and numeric ID

 m_stdDataLayer->addFeatureRendering("Airport", 123) ;

 // Associate some rendering with the new feature, use ID for

 // efficiency

 m_stdDataLayer->setFeatureRendering(0, 123,

 TSLRenderingAttributeSymbolStyle, 6003) ;

 m_stdDataLayer->setFeatureRendering(0, 123,

 TSLRenderingAttributeSymbolColour, black) ;

 m_stdDataLayer->setFeatureRendering(0, 123,

 TSLRenderingAttributeSymbolSizeFactor, 40.0) ;

 m_stdDataLayer->setFeatureRendering(0, 123,

 TSLRenderingAttributeSymbolSizeFactorUnits,

 TSLDimensionUnitsPixels);

Replace the dummy implementation of createFeature with the following:

 TSLEntitySet * es = m_stdDataLayer->EntitySet() ;

 // 123 is the numeric feature code we assigned on the Data Layer

 TSLSymbol * symbol = es->createSymbol(123, x, y) ;

 if (!symbol)

 return false ;

 // No need to configure any rendering, MapLink will look it up

 // from the Data Layer at display time.

 // Tell the layer that its contents have changed

 m_stdDataLayer->notifyChanged(true) ;

 return true ;

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 91 AUM1107

 Commercial in Confidence

12 Advanced Features of the Core SDK

This section discusses features of the Core SDK above and beyond simple display and

creation of maps.

12.1 Coordinate Systems

The class TSLCoordinateSystem encapsulates the transforms used to create a map. A

coordinate providing layer provides a TSLCoordinateSystem to allow the user to convert

between latitude/longitude, Map Units (MU) and TMCs. A TSLCoordinateSystem can be

created by the developer and used to convert between different Map Projections.

More information on Coordinate Systems and Map Projections can be found in the

“MapLink Studio Users Guide” and Help.

12.1.1 Transverse Mercator

EPSG have changed the formula used for Transverse Mercator while retaining the EPSG

IDs for the affected Coordinate Systems that use Transverse Mercator.

The original formula "USGS Snyder" and "JHS" formulas produce similar results in a +-4

degree band around the central longitude. Outside this band the results diverge. The JHS

algorithm is more accurate out to +-40 degrees.

EPSG recommend that the two formulas are not mixed.

EPSG recommend the use of the JHS formula.

The Snyder formula was used in MapLink 7.5 and older versions. Both formulas are

available in MapLink 8.0 and newer.

To address the EPSG change to the Transverse Mercator several changes have been

made to tsltransforms.dat that may affect an application. The changes are outlined

below:

• MapLink coordinate system IDs in the range [-5000..-9000] use the Transverse

Mercator JHS projection algorithm.

• IDs in the range [-1..-4900] use the original USGS Snyder Transverse Mercator

projection algorithm.

• The EPSG ID in the case of both Coordinate Systems are the same.

• The NAME has been updated to contain '(Snyder)' or '(JHS)' to distinguish the

algorithm used.

Where:

ID is the value used in TSLCoordinateSystem::findByID() and returned

by id().

NAME is the value used by TSLCoordinateSystem::findByName() and

returned by name().

The method TSLCoordinateSystem::findByName() functionality has changed slightly.

When looking up a Coordinate System that uses Transverse Mercator projection the

method expects one of two forms to be used, for example:

• "UTM (WGS84) Zone 1 North (Snyder)"

• "UTM (WGS84) Zone 1 North (JHS)"

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 92 AUM1107

 Commercial in Confidence

For backwards compatibility the findByName() method will return the original Snyder

Coordinate System if "(Snyder)" or "(JHS)" is missing from the name being searched

for. In this case a warning will be placed on the TSLThreadedErrorStack.

The method TSLCoordianteSystem::findByEPSG() may not work as expected, for

example;

const TSLCoordinateSystem *coordSystem =

TSLCoordianteSystem::findByEPSG(27700);

Returns the OSGB coordinate system using the Snyder Transverse Mercator formula. For

the new formula you need to do the following:

const TSLCoordinateSystem *coordSystems[2];

int numberFound = TSLCoordianteSystem::findByEPSG(27700, coordSystems, 2);

You would need to check the numberFound variable and then validate the name of each

returned TSLCoordinateSystem to see if it was the Snyder or JHS version. You could use

the MapLink IDs as these are unique.

12.1.2 TSLCoordinateConvertor

The class TSLCoordinateConvertor can be used to convert between latitude/longitude,

GARS, MGRS, UTM and UPS.

Additionally this class contains methods that do the following conversions:

• Great Circle

• Vincenty

• Rhumbline

• Geocentric

• Geodetic

• Topocentric

12.2 Decluttering

Decluttering is the temporary hiding of features. The features still exist in the map or

Data Layer but are not drawn. Applications often use decluttering, under user control, to

help prevent information overload. It is applied on the TSLDrawingSurface, thus

allowing the same Data Layer to be displayed differently on two different surfaces – e.g.

in an overview pane and the main window.

A Drawing Surface contains a list of decluttering settings for each Data Layer in the

surface, and an additional decluttering list that applies to all Data Layers (sometimes

referred to as the global decluttering list). The decluttering list for each Data Layer

inherits the contents of the global decluttering list, thus allowing decluttering to be easily

set up for several Data Layers in one method call, while still allowing decluttering

settings to be overridden on a per-Data Layer basis.

12.2.1 Declutter Feature Name and ID

The declutter status is configured on a per-feature basis using the Feature Name. The

Feature Names are hierarchical, usually as defined using the Feature Subclassing

configuration in MapLink Studio. Each level of the hierarchy is separated by a period in

the Feature Name. For example, a map may contain the following features:

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 93 AUM1107

 Commercial in Confidence

 vpf.Country.Europe.France

 vpf.Country.Europe.Germany

 vpf.Country.Africa.Egypt

 vpf.Country.Asia.China

 vpf.Country.Asia.Japan

 vpf.Water.Sea

 vpf.Water.Rivers

Each Feature also has an associated numeric Feature ID. It is this numeric ID that is

stored on an Entity, rather than the full name. Only the leaf Features of the hierarchy

have a numeric ID, others do not. For example, in the above list,

“vpf.Country.Europe.France” has a numeric Feature ID, whereas

“vpf.Country.Europe” does not.

Decluttering may be applied at any level in the hierarchy by specifying the appropriate

name. In the above example, all European countries may be decluttered by specifying

“vpf.Country.Europe”, all water features with “vpf.Water” and China specifically using

“vpf.Country.Asia.China”. It is for this reason that the declutter methods use the

Feature Name rather than the Feature ID.

The Feature Name to Feature ID mapping is as defined in the Feature Book of MapLink

Studio, or as defined on a TSLStandardDataLayer using the addFeatureRendering

method. Where Entity Based Rendering is used in a TSLStandardDataLayer, then the

addFeature method may be used to provide the mapping without setting up any Feature

Based Rendering.

You can determine what features are available on a particular Data Layer using the

TSLDataLayer::featureList method. This returns a read-only instance of type

TSLFeatureClassList. This class allows the application to query the number of features

available, their names and ID's. The contents of the list are typically displayed in a Tree

View with associated check boxes to control the declutter status.

On a TSLMapDataLayer, the Feature Class List is automatically populated when a map is

loaded. On a TSLStandardDataLayer, it is populated by the application calling the

addFeature or addFeatureRendering methods.

12.2.2 Declutter Status

MapLink uses the numeric Feature ID of an Entity to look up the required status before

rendering the Entity. The status may be set to TSLDeclutterStatusOn,

TSLDeclutterStatusOff or TSLDeclutterStatusAuto. To set the status use:

 m_drawingSurface->setDeclutterStatus(“feature”, status, layer)

The layer argument is optional. If specified, it targets the decluttering at a specified

Data Layer. Otherwise, the feature will be decluttered on all data layers in the drawing

surface through the Drawing Surface’s global decluttering list. Decluttering a specific

data layer is sometimes desirable since a Drawing Surface may contain multiple data

layers containing the same features, and the application may wish to only declutter the

feature from a single data layer.

The current declutter status may be queried using the

TSLDrawingSurface::getDeclutterStatus method. This returns one of the

TSLDeclutterStatusResult enumerations. In addition to values which map to those

used to set the status, this can also return a value of

TSLDeclutterStatusResultPartial, when called using a non-leaf node of the

hierarchy. This indicates that some Subclasses have a different declutter status.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 94 AUM1107

 Commercial in Confidence

The TSLDrawingSurface::declutterVisible method allows the application to query

whether a particular feature is currently visible or would be visible at a specified zoom

factor. The zoom factor is specified in terms of number of User Units per Device Unit.

12.2.3 Automatic Decluttering on Zoom

In addition to the standard On and Off declutter status values, it is possible to set the

status to be TSLDeclutterStatusAuto. This uses an additional method call to configure

minimum and maximum zoom factors for which the feature will be visible. These factors

are in terms of number of User Units per Device Unit. If the current zoom factor is

within the specified range then the Feature will be visible, otherwise it is invisible.

12.2.4 Declutter of Raster Features in Maps

When raster images are loaded into MapLink Studio, they may be assigned a Feature

Name in the Raster Configuration panel. This Feature Name is then available in the usual

declutter methods to enable or disable the display of that raster image. These appear in

a hidden Feature Book Section called ‘Rasters’ and default to ‘Raster’ if not supplied.

Thus, to declutter all rasters in all data layers in a drawing surface with the default

Feature Name, use the following call:

 ds->setDeclutterStatus(“Rasters”,TSLDeclutterStatusOff);

12.3 Searching Your Data

There are several ways of searching and querying your data through the MapLink SDK –

the most appropriate one depends upon what information you require and how complex

your criterion for selection is.

12.3.1 Finding the Entity under the Cursor

This is perhaps the most common reason for searching the data, and MapLink has a

simple way of doing so using the TSLDrawingSurface::findSelectedEntityDU method.

This takes a device unit position, such as the current cursor location, a search depth in

the Entity Hierarchy and an aperture in device units. It returns the top-most entity

found. A related method takes a position in User Units.

A few rules are applied to the selection to make sure that the entity found is appropriate.

• An optional flag allows Map Data Layers to be ignored. This is useful in an

editing environment.

• Any Data Layers with the TSLPropertyDetect property set to false and

any Entity with the TSLRenderingAttributeSelectable attribute set to

false will be ignored in the search. Note that the default value for

TSLPropertyDetect is false.

• When searching a Map Data Layer, the currently displayed Detail Layer will

be used for the query.

• Data Layers and Entity Sets are searched in reverse rendering order – i.e.

Top-most first.

• The search will only descend the Entity Set hierarchy as far as the

specified depth. A depth of 0 will always return the top-most Entity Set.

A depth of -1 is a special case that will traverse all Entities.

• Only Entities that are visible and not decluttered will be considered.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 95 AUM1107

 Commercial in Confidence

• The distance from the specified point to the Entity must be less than or

equal to the specified aperture.

• For Entities with complex outlines but a single TSLCoord position, i.e. Text

and Symbol objects, the distance is considered to be 0 if the specified

point lies anywhere within the current envelope of the Entity. Note that the

extents may be bigger than they appear due to font sizing with Text and

hidden boundaries in Symbols.

• For Surfaces (Polygons, Rectangles and Ellipses) the distance is considered

to be 0 if the specified point lies anywhere within the boundary of the

Entity (not including holes).

• If the point lies within a Surface Entity, and another non-Surface Entity

has already been found to be within the aperture, then the non-Surface

Entity will be returned in preference to the Surface Entity. Without this

rule, it would be virtually impossible to select a Polyline that is on top of a

Polygon since the distance to the Polygon would always be 0.

12.3.2 Finding all Entities within an Area

This is another common requirement, for which there are two pairs of query methods.

One pair is on the Drawing Surface and the other pair is on the Data Layer. All the

methods allow an extent (in TMC Units) and query depth to be specified. Additionally,

the Drawing Surface methods take the name of a Data Layer to search.

The first method in each pair takes an optional Feature Name. If this is specified, only

those Features are considered.

The second method in each pair takes an instance of a user defined Selector object –

derived from the TSLSelector class. The Selector object is called for every Entity that is

considered and allows user control over exactly which Entities are chosen.

Where a Map Data Layer is queried through the Data Layer methods, the specified

extent is used to determine which Detail Layer is searched. An optional Drawing Surface

ID may be used to identify which Entity last rendered extent to use. Where a Map Data

Layer is queried through the Drawing Surface methods, the currently displayed Detail

Layer is searched.

A few rules are applied to the selection to make sure that the entities found are

appropriate.

• Any Entity with the TSLRenderingAttributeSelectable attribute set to

false will be ignored in the search.

• Entity Sets are searched in reverse rendering order – i.e. Top-most first.

• The search will only descend the Entity Set hierarchy as far as the

specified depth. A depth of 0 will always return the top-most Entity Set.

A depth of -1 is a special case that will traverse all Entities.

• Decluttering Status is ignored.

• If a Feature Name is specified, then only those features will be considered.

• An Entity is considered if its last rendered envelope overlaps the specified

extent.

• If a TSLSelector object is specified, then any Entity considered will be

passed to the virtual select method of the object. This method should

return a TSLSelectorActionType value to indicate what action to take.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 96 AUM1107

 Commercial in Confidence

• If a selector action of TSLSelectorActionSelectNext is returned for a

TSLEntitySet object, then the search algorithm will not search within the

TSLEntitySet.

The query methods return an instance of the TSLMapQuery class, or NULL if no Entities

are selected. This object holds references to the chosen Entities. They are references to

the real Entities and so should not be destroyed. The application can iterate through the

references in the TSLMapQuery object to further act upon the Entities.

12.3.3 Picking

‘Picking’ may be performed via the ‘pick’ method. This allows selection of all types of

object, including 2D Entities, 3D Entities, Display Objects, Satellites and even custom

objects.

The TSLDrawingSurfaceBase provides 2 pick methods; both take a pixel location,

aperture and an optional TSLPickSelector parameters, while one also takes a data

layer name parameter. The TSLPickSelector is an abstract class that allows users to

filter the results based upon their own criteria. The data layer name parameter is used to

first filter the results to only include those from a desired data layer.

The return value of pick operations is an instance of the TSLPickResultSet class which

controls a set of TSLPickResult objects. This TSLPickResult class is an abstract

wrapper around the actual object found in the query location. The Core SDK provides

derivatives such as TSLPickResultEntity and TSLPickResultCustom, while other SDKs

provide additional derivatives. A user can determine the correct cast required by calling

the queryType operation on the object or the isType static operations on the derivative

types.

If a user wishes to provide their own custom pick result type from their

TSLClientCustomDataLayer, then they should derive a class from the abstract

TSLClientCustomPickResult type. In the pick method of their

TSLClientCustomDataLayer derivative class, they should add instances of this new

class to the passed TSLPickResultSet object.

12.3.4 Other Searching Facilities

There are several older searching methods (findEntityXXX) available on the

TSLDrawingSurface and TSLDataLayer, but these have very specific rules which are

detailed in the method descriptions. See the API Class Documentation for further

details.

12.4 Dynamic Rendering

The core MapLink SDK provides a mechanism by which users can dynamically alter how

data is rendered without modifying the data. This can be performed globally on all data

in a drawing surface or locally for selected data layers.

In order to take advantage of this technique, a class derived from

TSLClientCustomDynamicRenderer should be created. See the Dynamic Rendering

sample for example code. MapLink includes a premade dynamic renderer for S52

rendering. Future MapLink releases may provide standard dynamic renderers for such

actions as Thematic mapping.

When a data layer is drawn with an active dynamic renderer, the render method of the

TSLClientCustomDynamicRenderer will be called for each entity that is being drawn. The

dynamic renderer determines how the entity will be drawn - it can ask MapLink to draw

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 97 AUM1107

 Commercial in Confidence

the entity as normal, draw the entity with different rendering attributes or perform its

own custom drawing instead.

When using a dynamic renderer to draw an entity using different rendering attributes,

the dynamic renderer can either call the relevant setupAttributes methods and then

call the appropriate draw method (e.g. drawPolygon) on the TSLRenderingInterface,

or call the setupAttributes methods and return

TSLDynamicRendererActionUseCurrentRendering from the dynamic renderer's render

method. Both approaches will result in the same output, however returning

TSLDynamicRendererActionUseCurrentRendering from the dynamic renderer is more

efficient in some cases and so is the preferred method in this situation.

12.5 Optimisation Techniques

MapLink is targeted to high-performance applications. This section describes a few

techniques available to increase the performance and responsiveness of an application.

12.5.1 Buffering

When an application draws directly to the screen, two things become obvious:

• Flicker makes it apparent that the drawing is taking place, since the screen

blanks and then becomes populated with the picture. Even with a high-

performance graphics card, it does not require much data to be displayed

before this begins to detract from the aesthetics of an application.

• The second thing that is apparent is that every layer is drawn, even if it

hasn't changed. This is especially obvious in systems with moving objects

over a static map.

MapLink has several features to address these issues, through the use of buffering at

different levels. The problem of flicker may be reduced using Drawing Surface buffering

(back buffering). Once this has been configured, MapLink draws primitives into an off-

screen buffer and once complete, copies the off-screen buffer to the screen. If nothing

has changed since the last draw, then the existing buffer is copied. MapLink will

automatically flag the back buffer as invalid when the visible map area has changed, or

the Drawing Surface has been resized.

To configure a Drawing Surface as buffered add the following code to your application,

usually just after the Drawing Surface has been created.

 m_drawingSurface->setOption(TSLOptionDoubleBuffered, true) ;

Back buffering is sufficient where only a single Data Layer is being displayed or in

situations where the contents of all attached Data Layers change at the same time. In

many applications, there are multiple Data Layers with a set of fairly static underlays

and at least one dynamic or editable overlay. For these applications, MapLink has

secondary buffering. This is associated with a group of Data Layers that are attached to

the same Drawing Surface. In this type of buffering, all Data Layers in the group are

drawn into a separate off-screen buffer before being copied to the back buffer or screen.

Any non-buffered Data Layers are then drawn. If no buffered Data Layers have

changed, then the existing secondary buffer is copied without being redrawn.

To configure a Data Layer to be part of the buffered group for a particular Drawing

Surface, add the following code to your application, usually just after the Data Layer has

been added to the Drawing Surface.

m_drawingSurface->setDataLayerProps(“layername”,

 TSLPropertyBuffered, 1) ;

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 98 AUM1107

 Commercial in Confidence

In MFC based applications that use buffering, you should handle the WM_ERASEBGRD event

in order to stop Windows clearing the window itself and thus introducing flicker.

Typically, just override the OnEraseBackground method in the applications View object

and return True. This is appropriate when MapLink is rendering to the entire window. In

situations where MapLink is only drawing to part of the window then the application

should clear the parts of the window that MapLink does not render.

12.5.2 Tiled Buffering

Some drawing surfaces offer a more advanced version of data layer buffering called Tiled

Layer Buffering. This extends the buffering concept to split the total extent of all layers

in the drawing surface into a grid of tiles, which are rendered asynchronously as needed.

This means that in contrast to regular buffered layers, tiled buffering means that the

buffered layers do not need to be redrawn when panning the view.

Tiled buffering can be enabled by adding the following code to your application, usually

just after the Drawing Surface has been created:

 m_drawingSurface->setOption(TSLOptionTileBufferedLayers, true) ;

As the buffered tiles are generated asynchronously, the application will be notified when

new tiles are available through the TSLDrawingSurfaceDrawCallback.

When zooming using tiled buffering, MapLink will not block the application waiting for the

buffered tiles to be redrawn. This means that buffered layers will not be drawn until the

tiles for the new viewing resolution are ready. Since this is often undesirable,

Progressive Zooming can optionally be enabled using the following code:

 m_drawingSurface->setOption(TSLOptionProgressiveTileZoom, true) ;

This option instructs the drawing surface to use previously created tiles to fill in for tiles

at the new zoom scale that are not currently ready for drawing, meaning that buffered

layers will still be visible when zooming.

More information on tiled buffering can be found in the API documentation for the

TSLDrawingSurfaceTiledBufferControl class.

Tiled buffering is currently supported by the OpenGL drawing surface.

12.5.3 Caching

Within MapLink Studio, there is much emphasis on efficient tiling and layering of a map

to ensure that the run-time application can optimise the performance. This means that

in a system with a moving map, or where the user is zooming and panning, that map

tiles are being loaded and destroyed. This is itself is an obvious performance hit.

12.5.3.1 Memory Cache

To help mitigate the performance hit of tile swapping, the MapLink Core SDK has

facilities to configure an in-memory cache of recently used tiles. To avoid swamping

low-spec machines, the default cache configuration is fairly low at 32Mb. This can be set

on each Map Data Layer or Raster Data Layer using the following method:

 m_mapDataLayer->cacheSize(sizeInKiloBytes) ;

The cache may be further configured using the cacheFlushLimit which is the number of

tiles that the Data Layer attempts to keep in memory when it overflows. Note that when

a tile is added to the cache, its size is assumed to be the same as the disk size – except

for compressed raster images which are expanded on loading. If a tile has been saved

from MapLink Studio using the Enterprise Compression or Optimised for Size options,

then there will be some level of expansion in memory and you should account for this

when setting your cache size.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 99 AUM1107

 Commercial in Confidence

If your map appears fast in the MapLink Viewer, but slow in your application then your

memory cache size may be the problem.

12.5.3.2 Persistent Cache

The Map Data Layer also has the facility to store tiles in a secondary, disk-based

persistent cache. This is typically used when employing the Remote File Loader so this

topic is covered in that section. Basic information may be found in the online help for

the TSLPersistentCacheData object.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 100 AUM1107

 Commercial in Confidence

12.6 Rendering Configuration Files

Many Rendering Attributes define an integer index into configuration files. These

configuration files must be read at the start of a MapLink application as described in

Section 8.3. There are 5 basic files. This section describes the contents and format of

the current versions. When loaded, these files are used across the MapLink application –

only one version of each configuration file may be loaded at any one time. You should

note that MapLink is consistently in development so if you choose to modify the standard

files then you may not be able to take advantage of any future enhancements.

12.6.1 Colours

The colours file, usually called tslcolours.dat, holds the definition of the colour palette

and associated RGB values. The format is quite simple and is identical to the palette file

written out alongside a map by MapLink Studio. The first few lines of a colours file are

shown below. Each line is commented in red – although the comments should not

appear in the actual file.

By default, maps generated from MapLink Studio have an associated palette file. This

palette file will be loaded by the MapLink SDK when the map is loaded. This means that

the global palette may change. For this reason, it is recommended that all maps to be

loaded into an application are constructed using the same palette.

A number of colour index values are reserved as follows:

• MapLink Studio User defined colour base: 500

• Symbols colour range: 100000..100023

• S-52 colour range: 110000..110200

• Dynamic colour range: 120000..130000

TSLCL 105 // File ident and format version number

ColourCubePalette // Name of palette, for MapLink Studio

; // Field separator on subsequent lines

1;184;134;11;Dark Goldenrod // Index;Red;Green;Blue;Name in FeatureBook

2;189;183;107;Dark Khaki // Next colour ... and so on 203 times

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 101 AUM1107

 Commercial in Confidence

12.6.2 Line Styles

The line styles file, usually called tsllinestyles.dat, holds the definition of the edge styles

used for polylines, arcs and the boundaries of surfaces such as polygons. The format is

rather more complex than the colours file.

There are several different types of line style, some more complex than others. The

example below contains one of each currently supported type; these are explained later.

• Versions 107 and newer versions of the file must be saved in the UTF-8

code page without a BOM (Byte Order Mark).

• Some index values are reserved. Please refer to the file for additional

information.

• Comments appear prefixed by the # character and are ignored by MapLink.

Include declarations allow for a more structured layout of the line style file by

segregating different categories of style into their own file.

The declaration is prefixed by the ‘I’ character followed by the lower and upper

ranges of the styles they contain.

The final semi-colon delimited value is filename relative to the current file. The

format of this sub-file is the same as the root file and can in turn include other

files. Should the file not be found at the location indicated, any associated

TSLPathList will be checked instead.

One of the major benefits, also introduced, of using included sub-files is that

these files can be delay-loaded or in other words only loaded when they are

required.

• Section headings are a concept borrowed from the symbol lists and allows

the categorisation of styles from the point of view of the run-time. They

appear in the file prefixed with ‘S’ followed by the section name, such as

‘APP6A’.

Every style that appears after a section heading declaration will be associated

with that section, although this does not include styles that appear in sub-files

included within the section. Sub-files require their own section heading. Section

headings may appear more than once within the tree of files with all styles that

appear under each of these section heading declarations being associated with

the same section.

The SDKs now allow the querying of a style’s associated section using the

getXxxStyleValue methods.

TSLES 108 // File ident and format version number

; // Field separator on subsequent lines

#This is a comment

I;10;99;linestyles/anotherlinestylesfile.dat

#Above is an include declaration to another file.

S;This is a section heading // Section name for subsequent styles

1;standard;Solid;0;3;1;0;0;0

2;standard;Dash (cosmetic pen);1;3;1;0;0;0

3;standard;Dot (cosmetic pen);2;3;1;0;0;0

4;standard;Dash-dot (cosmetic pen);3;3;1;0;0;0

5;standard;Dash-dot-dot (cosmetic pen);4;3;1;0;0;0

6;standard;Dash 8;6;3;1;0;1;4 8 8 8 8

9;multi;Narrow road, light casing;2;[1,(153,153,153),3];[1,(-1,-1,-1),1]

10615;ttlclsstrk;Waterfall;GeoSym0615;C[(100,100,200),1]D[0,0]D[10,0]

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 102 AUM1107

 Commercial in Confidence

• In order to make it easier for custom styles to be managed, a specific

‘user’ sub-file with a specific range of index values has been defined and

appended to the end of the line styles file. This is called

‘linestyles\tsllinestylesuser.dat’.

This file is not shipped by default with MapLink, but it’s non-existence will not

generate an error.

Custom lines styles should be added to this file, thus making it easier to manage

user-defined styles across MapLink upgrades.

The remaining entries in the file begin with the line style index (used with

TSLRenderingAttributeEdgeStyle), the type (standard/multi/dllname) and a textual

description that is displayed in MapLink Studio Feature Book. The rest of the fields for

each entry are type dependant.

12.6.2.1 Standard Linestyles

Standard Operating System: These are of various types indicated by the first type

specific field.

• Type 0: Solid.

• Type 1: Dashed.

• Type 2: Dotted.

• Type 3: Dash-Dot pattern.

• Type 4: Dash-Dot-Dot pattern.

• Type 5: NULL (invisible) pen

• Type 6: User defined pattern

• Type 7: Alternating on-off pixels (Win 2000 and XP only)

The subsequent fields are defined below:

• Obsolete: Ignored from MapLink 4.5 onwards

• Join style: 0=Bevel, 1=Mitre, 2=Round, geometric only.

• Obsolete: Ignored from MapLink 4.5 onwards

• Geometric: To indicate a cosmetic (0) or geometric (1) pen

• Pattern size: For user-defined patterns, geometric only

User defined patterns may only be applied to geometric pens and are a sequence of on-

off pairs of device unit values, each value separated by spaces. The first value in the

sequence is a count of such values. On Windows platforms, cosmetic pens use efficient

operating system specific methods of rendering, but are limited to single-pixel wide

patterned lines. Attempting to draw a wide cosmetic line will force the style to solid. This

is an operating system function, e.g.

27;standard;Dash 4, very wide spacing;6;3;2;0;1;4 4 16 4 16

12.6.2.2 Multi-pass Linestyles

Basically, multi-pass line styles are created by using a combination of any other line

style in the tslsymbols.dat file to build up a more complex style. This allows you to

specify two simple styles and then use the ‘multi-pass’ functionality to add them

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 103 AUM1107

 Commercial in Confidence

together. Each pass draws a different line style on top of the previous one which can be

used to build up the desired effect.

Take the following example:

Assume we want to create a line consisting of a thin red line in the centre of a

thick black line. Essentially, we want to draw a 3-pixel high black line first and

then a 1 pixel high red line over the top. (Note that this style will always be no

less than 3 pixels high, even if the user sets it to 1 pixel).

To create this style:

1) Open the tsllinestyles.dat (This can be found in your MapLink/config

directory. It is probably better if you back it up before you edit it).

2) Scroll to the bottom of the file and enter:

X;multi;Line Style Description;2;[1,(0,0,0),3];[1,(255,0,0),1]

The ‘2’ shows that the line has two token values.

The token ‘[1,(0,0,0),3]’ says “use the solid line style (1), draw in black

(0,0,0) and three units wide (3)”.

The token ‘[1,(255,0,0),1]’ says “use the solid line style (1), draw in red

(255,0,0) and 1 units wide (1)”.

If you use (-1,-1,-1) in the token for the colour value, the user will be able to override

the colour at runtime (i.e. it can be any colour) using the

TSLRenderingAttributeEdgeColour or TSLRenderingAttributeExteriorEdgeColour.

The ‘X’ should be replaced by a unique number, but you must enter ‘multi’ as the second

value

12.6.2.3 Stroked Linestyles

Stroked linestyles are implemented by an extension shared library (ttlclsstrk). The

shared library is written specifically for the target platform.

The file tsllinestyle.dat contains many stroked linestyle definitions. An example of a

stroked linestyle is shown below (note that this should all be on a single line, but is split

in this document for clarity):

1000;ttlclsstrk;My Custom Line;MyCustomLineStyleTag;

C[(-1,-1,-1),4]U[0,-2]D[5,0]D[5,0]B

C[(-1,-1,-1),2]U[0,1]D[5,0]D[5,0]D[4,0]

The above line is broken down as follows:

StyleID;typeOrCustomDLLName;Textual comment displayed in

feature book, no semi-colons allowed;DLL specific information

For the ttlclsstrk.so/sl/dll (DLL) which implements this type of line, the DLL

specific information is:

UniqueTag;CommandString

The CommandString is a chain of

C[(R,G,B),W] Colour and width, RGB (red, green blue), W width. If R, G and

B are all -1, then colour defined by

TSLRenderingAttributeEdgeColour or Feature Book is used

D[x,y] Pen down, line to (currentPositionX + x, currrentPositionY + y)

U[x,y] Pen up, move to (currentPositionX + x, currrentPositionY + y)

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 104 AUM1107

 Commercial in Confidence

B Bend Point. This is where we can effectively start a new line

segment.

Where:

Pen Down means place the drawing point on the paper and draw to the

specified position from the current position.

Pen Up means raise the drawing point off the paper and move to the

specified position from the current position.

All moves are relative to the current position.

The easiest approach when creating or modifying a Stroked Linestyle is to use a pen and

a piece of graph paper, recording exactly how you draw the line (pen up, pen down,

colour, amount moved).

So for 'D[5,0]U[5,0]D[5,0]', you get the following simple line:

‘----- -----‘

Where:

 - represents pen colour being drawn (Pen Down).

 space represents pen colour not being drawn (Pen Up)

The start point of your line is always at position [0, 0].

In the above simple line at the end of the sequence the current drawing position is [0,

15].

So if you wanted to return to [0, 0], you would append 'U[0,-15]' to the line definition.

Please note the following:

• When drawing a stroked linestyle MapLink uses the horizontal axis where

y=0, as the middle of the line.

• A style must progress along the x-axis.

• The line thickness is specified in pixels. So a line thickness of three will be

drawn in a similar way that Windows/X11 will draw a solid line of thickness

3.

• Increasing the thickness of the line via Rendering Attributes or Feature

Book settings will extend the vertical axis of the stroke definition but will

not extend the horizontal axis.

• Line segments are drawn with a round end cap on windows.

• You can also increase the number of 'B's to improve the ability of the

custom line style to follow the draw points.

In general 'B' points must occur when the y-axis is at 0. If you make

changes to a linestyle check the changes using a relatively complex map

or drawing.

• Stroked linestyles will have an impact on drawing performance. The more

complex a linestyle the larger the impact on performance.

• The stroked linestyle needs to be put in the tsllinestylesuser.dat file.

• If you add any linestyles use the style id's 50000-59999.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 105 AUM1107

 Commercial in Confidence

12.6.3 Fill Styles

The fill styles file, usually called tslfillstyles.dat, holds the definition of the fill styles

used for surfaces such as polygons, rectangles and ellipses. The format is similar to the

line styles file.

There are several different types of fill style, some more complex than others. The

example below contains one of each currently supported type; these are explained later.

Each line is commented in red – although the comments should not appear in the actual

file.

• Version 105 and newer versions of the file must be saved in the UTF-8

code page without a BOM (Byte Order Mark).

• Some index values are reserved. Please refer to the file for additional

information.

• Comments appear prefixed by the # character and are ignored by MapLink.

• Include declarations allow for a more structured layout of the fill style file

by segregating different categories of style into their own file.

The declaration is prefixed by the ‘I’ character followed by the lower and upper

ranges of the styles they contain.

The final semi-colon delimited value is filename relative to the current file. The

format of this sub-file is the same as the root file and can in turn include other

files. Should the file not be found at the location indicated, any associated

TSLPathList will be checked instead.

TSLFS 106 // File ident and format version number

; // Field separator on subsequent lines

#This is a comment

I;10;499;fillstyles/anotherfillstylesfile.dat

#Above is an include declaration to another file.

S;This is a section heading // Section name for subsequent styles

1;standard;Solid;4;0;0

2;standard;Wide right diagonal hatching;2;5;0;0

3;standard;Wide cross-hatching;2;6;0;0

4;standard;Wide diagonal cross-hatching;2;7;0;0

5;standard;Wide left diagonal hatching;2;8;0;0

6;standard;Wide horizontal hatching;2;9;0;0

7;standard;Wide vertical hatching;2;10;0;0

8;standard;Hollow;3;0;0

9;standard;Narrow right diagonal hatching;1;8;8

1;0;0;0;1;0;0;0

0;0;0;1;0;0;0;1

0;0;1;0;0;0;1;0

0;1;0;0;0;1;0;0

1;0;0;0;1;0;0;0

0;0;0;1;0;0;0;1

0;0;1;0;0;0;1;0

0;1;0;0;0;1;0;0

500;alpha;Translucent: alpha=32;32

501;alpha;Translucent: alpha=64;64

600;rop;ROP 1;1

601;rop;ROP 2;2

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 106 AUM1107

 Commercial in Confidence

One of the major benefits, also introduced, of using included sub-files is that

these files can be delay-loaded or in other words only loaded when they are

required.

• Section headings are a concept borrowed from the symbol lists and allows

the categorisation of styles from the point of view of the run-time. They

appear in the file prefixed with ‘S’ followed by the section name, such as

‘APP6A’.

Every style that appears after a section heading declaration will be associated

with that section, although this does not include styles that appear in sub-files

included within the section. Sub-files require their own section heading.

Section headings may appear more than once within the tree of files with all

styles that appear under each of these section heading declarations being

associated with the same section.

The SDKs now allow the querying of a style’s associated section using the

getXxxStyleValue methods.

• In order to make it easier for custom styles to be managed, a specific

‘user’ sub-file with a specific range of index values has been defined and

appended to the end of the line styles file. This is called

‘fillstyles\tslfillstylesuser.dat’.

This file is not shipped by default with MapLink, but it’s non-existence will not

generate an error.

Custom fill styles should be added to this file, thus making it easier to manage

user-defined styles across MapLink upgrades.

The remaining entries in the file begin with the fill style index (used with

TSLRenderingAttributeFillStyle), the type (standard/alpha/rop) and a textual

description that is displayed in MapLink Studio Feature Book. The rest of the fields for

each entry are type dependant.

There are several different types of fill style …

• Standard Operating System: These are of various types indicated by the

first custom field.

• Type 4: Solid. Subsequent fields for this entry are ignored.

• Type 3: Hollow. Subsequent fields for this entry are ignored.

• Type 2: Hatched. Next field is the hatch style. Subsequent fields for this entry

are ignored.

• Style 5: Diagonal, 45 degree upward, left to right.

• Style 6: Horizontal and vertical crosshatch.

• Style 7: 45-degree crosshatch.

• Style 8: Diagonal, 45 degree downward, left to right.

• Style 9: Horizontal hatch.

• Style 10: Vertical hatch.

• Type 1: Patterned: Next two fields are width and height of the bitmap grid

that follows. Each entry in the grid represents a pixel in the pattern. A 1

means that the pixel will be drawn in the current fill colour, a 0 means that

the pixel will not be drawn – i.e. these pixels are transparent. MapLink has

no concept of an opaque patterned fill.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 107 AUM1107

 Commercial in Confidence

Note that patterned fills on certain platforms (Windows 98) are limited to

8x8. Any size that is not a multiple of 8 may incur a performance

penalty.

• Alpha blended: These are currently only available on Windows 2000 and

newer platforms, along with X11 platforms that support the XRender

extension. The custom field defines an alpha-blend in the range 0 to 255,

where 0 is completely transparent and 255 is fully solid.

• Raster Operation: These fill styles apply a raster operation code to the fill.

• R2_BLACK (1): Pixel is always 0.

• R2_COPYPEN (2): Pixel is the pen colour.

• R2_MASKNOTPEN (3): Pixel is a combination of the colours common to both

the screen and the inverse of the pen.

• R2_MASKPEN (4): Pixel is a combination of the colours common to both the

pen and the screen.

• R2_MASKPENNOT (5): Pixel is a combination of the colours common to both

the pen and the inverse of the screen.

• R2_MERGENOTPEN (6): Pixel is a combination of the screen colour and the

inverse of the pen colour.

• R2_MERGEPEN (7): Pixel is a combination of the pen colour and the screen

colour.

• R2_MERGEPENNOT (8): Pixel is a combination of the pen colour and the

inverse of the screen colour.

• R2_NOP (9): Pixel remains unchanged.

• R2_NOT (10): Pixel is the inverse of the screen colour.

• R2_NOTCOPYPEN (11): Pixel is the inverse of the pen colour.

• R2_NOTMASKPEN (12): Pixel is the inverse of the R2_MASKPEN colour.

• R2_NOTMERGEPEN (13): Pixel is the inverse of the R2_MERGEPEN colour.

• R2_NOTXORPEN (14): Pixel is the inverse of the R2_XORPEN colour.

• R2_WHITE (15): Pixel is always 1.

• R2_XORPEN (16): Pixel is a combination of the colours in the pen and in the

screen, but not in both.

Note that ROP brushes are highly dependent for the effect on the underlying graphics

engine implementation and some degree of experimentation may be necessary.

Different graphics devices will interpret these in different ways – notably printers.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 108 AUM1107

 Commercial in Confidence

12.6.4 Symbols

The symbols file, usually called tslsymbols.dat, holds the definition of the visualisation

for instances of TSLSymbol entities. The format is similar to the line styles file. The

section names are used for display in MapLink Studio.

• Version 109 and newer versions of the file must be saved in the UTF-8

code page without a BOM (Byte Order Mark).

• Some index values are reserved. Please refer to the file for additional

information.

• Comments appear prefixed by the # character and are ignored by MapLink.

• Include declarations allow for a more structured layout of the symbol file

by segregating different categories of style into their own file. The

declaration is prefixed by the ‘I’ character followed by the lower and upper

ranges of the styles they contain. The final semi-colon delimited value is

filename relative to the current file.

The format of this sub-file is the same as the root file and can in turn include

other files. Should the file not be found at the location indicated, any associated

TSLPathList will be checked instead.

One of the major benefits, also introduced, of using included sub-files is that

these files can be delay-loaded or in other words only loaded when they are

required.

• Section headings allow the categorisation of styles from the point of view

of the run-time. They appear in the file prefixed with ‘S’ followed by the

section name, such as ‘APP6A’.

Every style that appears after a section heading declaration will be associated

with that section, although this does not include styles that appear in sub-files

included within the section. Sub-files require their own section heading.

Section headings may appear more than once within the tree of files with all

styles that appear under each of these section heading declarations being

associated with the same section.

The SDKs now allow the querying of a style’s associated section using the

getXxxStyleValue methods.

TSLSL 110 // File ident and format version number

; // Field separator on subsequent lines

#This is a comment

I;2;14000;symbols/anothersymbolsfile.dat

S;Basic Shapes // Section name for subsequent symbols

T;1;0;0;1;0;\MapLink 4.0\TMF\Circle Filled.tmf

S;UK Attractions (Icons) // Section name for subsequent symbols

R;14001;16;16;\Attractions\DfT\Agricultural Museum.ico

S;MapLink 4.0 (Fixed Size) // Section name for subsequent symbols

V;99000;0;0;0;1; Appears as SQUARE

 5;-3 -3; -3 3; 3 3; 3 -3; -3 -3;

S;Raster Symbols // Section name for subsequent symbols

C;110000;16;16;1;\Rasters\Oil Well.png

S;Font Symbols // Section name for subsequent symbols

F;120000;1

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 109 AUM1107

 Commercial in Confidence

• In order to make it easier for custom styles to be managed, a specific

‘user’ sub-file with a specific range of index values has been defined and

appended to the end of the symbol styles file. This is called

‘symbols\tslsymbolsuser.dat’. This file is not shipped by default with

MapLink, but it’s non-existence will not generate an error.

Custom symbols should be added to this file, thus making it easier to manage

user-defined styles across MapLink upgrades.

There are five different types of symbol available. The first field for each entry line

indicates the type; the second is the symbol ID used for setting the

TSLRenderingAttributeSymbolStyle value.

Type T: These are TMF symbols, created in Symbol Studio. Subsequent fields after the

symbol ID define the x and y origin of the symbol in the TMC space of the symbol itself,

a scalable flag, the default rotatability of the symbol and the filename relative to the

symbols file or in the config/symbols directory. Non-scalable TMF symbols are always

drawn in the same TMC units as defined in the symbol and take no notice of the size

defined on the symbol instance.

Type R: These are raster icon symbols. Subsequent fields after the symbol ID define the

x and y origin of the symbol in the device unit space of the symbol itself, a scalable flag

and the filename relative to the symbols file or in the config/symbols directory.

Type C: These are raster symbols. Subsequent fields after the symbol ID define the x

and y origin of the symbol in the device unit space of the symbol itself, a scalable flag

and the filename relative to the symbols file or in the config/symbols directory.

Type V: These are simple line vector symbols, always fixed size in device units.

Subsequent fields after the symbol ID define the x and y origin of the symbol, a scalable

flag (currently ignored) and the number of lines (N). After this there are N lines defined

of the following form:

NumPointsInLine;x0 y0;x1 y1; … ;xN yN

Type F: These are font symbols which use a single character from a font as the symbol.

The subsequent field after the symbol ID defines the font ID from the fonts file that the

symbol will use.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 110 AUM1107

 Commercial in Confidence

12.6.5 Fonts

The fonts file, usually called tslfonts.dat, holds the definition of the visualisation for

instances of TSLText entities. The format is similar to the line styles file.

• Version 106 and newer versions of the file must be saved in the UTF-8

code page without a BOM (Byte Order Mark).

• Comments appear prefixed by the # character and are ignored by MapLink.

• Include declarations allow for a more structured layout of the fill style file

by segregating different categories of style into their own file. The

declaration is prefixed by the ‘I’ character followed by the lower and upper

ranges of the styles they contain. The final semi-colon delimited value is

filename relative to the current file.

The format of this sub-file is the same as the root file and can in turn include

other files. Should the file not be found at the location indicated, any associated

TSLPathList will be checked instead.

One of the major benefits, also introduced, of using included sub-files is that

these files can be delay-loaded or in other words only loaded when they are

required.

• Section headings are a concept borrowed from the symbol lists and allows

the categorisation of styles from the point of view of the run-time. They

appear in the file prefixed with ‘S’ followed by the section name, such as

‘APP6A’.

Every style that appears after a section heading declaration will be associated

with that section, although this does not include styles that appear in sub-files

included within the section. Sub-files require their own section heading. Section

headings may appear more than once within the tree of files with all styles that

appear under each of these section heading declarations being associated with

the same section.

The SDKs now allow the querying of a style’s associated section using the

getXxxStyleValue methods.

Of the remaining file entries, they appear with the following fields:

• Font ID used for TSLRenderingAttributeTextFont.

• Type : 0 = Operating System, 1 = Vector, 2 = Xft (see next section)

• Subsequent fields are operating system and font type dependent:

• For Windows, operating system fonts define the name, weight, italic and

underline flags.

TSLFNT 107 // File ident and format version number

; // Field separator on subsequent lines

#This is a comment

I;3;55;symbols/anothersymbolsfile.dat

#Above is an include declaration to another file.

S;This is a section heading // Section name for subsequent styles

1;0;Arial;100;0;0

2;0;Arial Black;100;0;0

56;1;TSLRom.thf

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 111 AUM1107

 Commercial in Confidence

• For X11 platforms: The Type ‘0’ is deprecated and should be avoided. Text

drawn using the Type ‘0’ font drawing will not display UTF-8 text correctly. You

should migrate to Type ‘2’.

• For vector fonts, the rest of the line defines the name of a Hershey Font file

used to render the scalable vector font. This type of font is very efficient for

rendering rotated text but is a simple single pixel wide line. Vector fonts only

support printable ASCII.

12.6.5.1 Xft Fonts (X11)

MapLink 7.0 and newer draws text using the Xft extension by default. This means that

any font that is accessible through Fontconfig on the host system can be used.

MapLink 8.0 uses Pango and Xft for font rendering.

Strings rendered using the Xft extension can be drawn rotated. If you are using multiple

threads for rendering, then you need to be aware that Xft is not thread safe. We have

exposed two methods; TSLMotifSurface::lockXft() and

TSLMotifSurface::unlockXft() when you draw text using the Xft extension.

It is possible to draw strings which are represented as UTF8. However, this is not

officially supported as the layout engine is very simple. If you have a requirement to

draw non-ASCII text please contact sales/support so that we can gauge the demand.

MapLink accepts Fontconfig pattern strings, allowing full control over font appearance.

The following is an example from the 'X11' tslfonts.dat. The bold section shows several

example patterns.

More information about the naming convention can be found here:

• http://www.freedesktop.org/software/fontconfig/fontconfig-user.html

The section 'Font Properties' is a list of valid properties. The 'Font Names' is the

definition of the formatting of the strings.

Applications desiring the text rendering behaviour from MapLink 6.0 and earlier should

replace the default tslfonts.dat fonts file with tslunixbitmapfonts.dat from the

MapLink config directory.

12.7 APP-6A and 2525B Symbology

MapLink supports most APP-6A and 2525B symbology using the TSLAPP6ASymbol and

TSLAPP6AHelper classes.

To choose between APP-6A or 2525B symbols, you need to load the appropriate

configuration file thus:

TSLFNT 107

;

1;2;Helvetica:weight=medium:slant=roman;0;0

12;2;Helvetica:weight=medium:slant=oblique:width=condensed;0;0

16;2;Bookman:weight=light:slant=italic;0;0

http://www.freedesktop.org/software/fontconfig/fontconfig-user.html

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 112 AUM1107

 Commercial in Confidence

string config(TSLUtilityFunctions::getMapLinkHome());

config.append("/config/app6aConfig.csv"); // the default config file

TSLAPP6AHelper *symbolHelper = new TSLAPP6AHelper(config.c_str());

if (!symbolHelper->valid())

 ... // error

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 113 AUM1107

 Commercial in Confidence

You can also choose to use either a filled set of symbols or unfilled set of symbols by

loading the corresponding configuration file:

TSLAPP6AHelper configuration file Description

<MAPLINK_HOME>\config\app6aConfig.csv APP-6A, frames are filled

<MAPLINK_HOME>\config\app6aUnfilledConfig.csv APP-6A, frames are not

filled

<MAPLINK_HOME>\config\2525bConfig.csv 2525B, frames are filled

<MAPLINK_HOME>\config\2525bUnfilledConfig.csv 2525B, frames are not

filled

The default constructor to TSLAPP6AHelper will load from:

• <MAPLINK_HOME>\config\app6aConfig.csv

You can choose to either obtain symbols as bitmaps (GDI and X11 only) or as a vector

representation (TSLEntitySet). It is recommended to avoid the raster version on X11

due to X-Server resource constraints.

The vector representation is the only valid option for the OpenGL drawing surface.

const char fighterId[] = "1.x.2.1.1.2";

TSLAPP6ASymbol theSymbol;

if (!symbolHelper->getSymbolFromID(fighterId, theSymbol))

 ... // error

theSymbol.hostility(TSLAPP6ASymbol::HostilityHostile);

theSymbol.designation("ABC123");

theSymbol.heightType(TSLDimensionUnitsPixels);

theSymbol.height(100);

theSymbol.x(400000000); // TMCs

theSymbol.y(0);

TSLEntitySet* es = symbolHelper->getSymbolAsEntitySet(&theSymbol);

if (!es)

 ... // error

// TSLStandardDataLayer* stdDataLayer;

stdDataLayer->entitySet()->insert(es); // takes ownership of new set

stdDataLayer->notifyChanged(true);

// draw...

And we get something like this:

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 114 AUM1107

 Commercial in Confidence

12.8 Raster Display

Many GIS based applications need to display information in raster format. Some sources

of raster data, such as CADRG or ASRP charts, are likely to be embedded within a

MapLink Studio map. These forms of raster image are typically processed through

MapLink Studio and as such, would be displayed automatically when the map is loaded

into a TSLMapDataLayer.

Other examples, such as aerial photography, bathymetric soundings or satellite images,

are more likely to be displayed in addition to the map. These images may be displayed

using the TSLRasterDataLayer. This is instantiated and added to a

TSLDrawingSurface, just like any other Data Layer.

The TSLRasterDataLayer has no Coordinate System of its own and does no run-time

projection of the raster image. It is therefore imperative that any raster added to a

TSLRasterDataLayer must be in the same Coordinate System as the currently loaded

map. For example, a side-scan sonar system outputs a raster in the local UTM zone.

This raster could be added into a TSLRasterDataLayer correctly if it was being displayed

on a Drawing Surface containing a map with the same UTM zone.

12.8.1 Adding Rasters

To add a raster image to the Data Layer, use the method

TSLRasterDataLayer::addRaster. This method takes the unique name of the raster and

the coordinates of the bottom left and top right corners of the raster in internal TMC

units. An additional boolean flag allows control over whether the raster is pre-loaded or

only in memory when it is being rendered. The unique name may be the full pathname

of the raster file. Alternatively, the unique name may be the simple filename of the

raster file, and a TSLPathList may be added to the Data Layer to indicate in which

directory the file may be found.

12.8.2 Adding Masks

Many raster images added to a TSLRasterDataLayer will be projected in some way.

Others may contain non-rectangular data or pixels that are unassigned. Such images

may have an associated mask in order to hide the appropriate pixels - in effect, make

them transparent. A mask is a 1-bit monochrome image that must be the same size as

the associated raster image. When a mask is attached to a raster, the only pixels

displayed are those whose corresponding mask pixel is set. MapLink Studio

automatically creates masks when appropriate and places these alongside or embedded

with, the raster image.

To add a mask to a raster, use

TSLRasterDataLayer::addMask(rasterName, maskName)

Again, the names may either be the full pathname or simple filename depending upon

whether a TSLPathList has been attached to the Data Layer.

12.8.3 Raster Pyramids and Supported Formats

MapLink Studio, and Windows based applications can load raster images in many

different formats - see the Deployment section for details of the associated

dependencies. MapLink Studio currently outputs images in TIFF, PNG or JPEG format.

All these formats can be read on Windows or X11 systems.

There is one other file format, the Envitia Raster Pyramid. This is a highly optimised

form of raster image, which encapsulates reduced resolution images, tiling of high-

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 115 AUM1107

 Commercial in Confidence

resolution images and automatic embedding of associated masks. This format is

typically output by MapLink Studio, but a simple flat raster may be converted to a Raster

Pyramid using the TSLRasterUtilities::rasterToPyramid method. An associated

method, pyramidToRaster, does the reverse conversion. The image data embedded

within the Raster Pyramid is usually in TIFF, PNG or JPEG format.

12.9 Loading and Saving Data Layer Contents

Many applications need to display information from an external data source. Others

need to make the information they display persistent. Several of the TSLDataLayer

derivatives can load and/or save their contents. The exact capabilities vary between

Data Layer types.

The TSLMapDataLayer can display a map which has been generated by MapLink Studio.

The contents of the map are defined and referenced by a ".map" or ".mpc" file. To load

the map into the TSLDataLayer, use the TSLMapDataLayer::loadData method.

The TSLStandardDataLayer can both load and save its contents, either via a file or via

an in-memory buffer. To read from or write to a file, use the loadData and saveData

methods. Each takes the filename to use. To read from or write to an in-memory

buffer, use either loadDataFromBuffer or saveDataToBuffer. The

loadDataFromBuffer method should be passed a buffer that the application has created,

along with the size of the data that the buffer contains. The saveDataToBuffer method

will create a buffer of the appropriate size, populate it with the contents of the Data

Layer and return it to the application along with the size. This buffer may then be stored

however the application requires, for example into a database. Once the application has

finished with the buffer, it should call the deleteBufferData method so that the buffer

can be destroyed. Note that the loadDataWithConfig and saveDataWithConfig

methods will additionally persist the rendering and feature class list of the Standard Data

layer.

The TSLRasterDataLayer is similar to the TSLStandardDataLayer in that it has the

same load/save methods via a file or buffer. However, it does not necessarily store its

contents directly. Instead, it can either store the meta-data of its contents or the meta-

data and its contents. For each raster being displayed, the meta-data contains the

filename, its referencing coordinates and the filename of any mask associated with the

raster. The ability to save the raster images is only available when saving to a file, not to

a buffer.

All of the loadData and loadDataFromBuffer methods will first clear the current

contents of the Data Layer. The TSLStandardDataLayer also contains methods to

append data to the current contents without clearing them first. These are appendData

and appendDataFromBuffer.

12.10 Interoperability

Interoperability in this context means the exchange of data between MapLink and other

GIS formats. This is most obvious in MapLink Studio but is also available for a limited

subset via the run-time Core SDK. The essential steps for importing or exporting are the

same regardless of data format.

The steps for importing data are as follows

• Unlock the required interoperability support using

TSLUtilityFunctions::unlockSupport.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 116 AUM1107

 Commercial in Confidence

• Create an array of TSLFeatureMapping objects, defining the native

features to be imported, and the MapLink featureID that will be stored on

them on import. This also defines the Render Level for objects of that

feature type.

• Load the file into a TSLStandardDataLayer using the
TSLUtilityFunctions::importData

• Create an instance of TSLInteropImportSet and add the imported layer to

it.

• Continue this until all related files are added to the import set, in different

layers.

• Create an instance of TSLInteropManager and pass the import set to the

postImportProcess method. This method reconstructs any TMF complex

primitives that have been encoded in the data – such as Bordered

Polygons.

• The call to postImportProcess will merge the contents of the import set

into a new Standard Data Layer and return it for use by the application.

• Destroy the import set and related Data Layers since they are no longer

required.

• Note that more flexible formats may not require the use of an import set

since they are heterogeneous.

The steps for exporting data are as follows

• Unlock the required interoperability support using

TSLUtilityFunctions::unlockSupport.

• Ensure that all required data is in a single TSLStandardDataLayer.

• Create an instance of TSLInteropManager and pass the Standard Data

Layer to the preExportProcess method. This method deconstructs any

TMF complex primitives that exist in the Data Layer – such as Bordered

Polygons.

• The call to preExportProcess will create an instance of a

TSLInteropExportSet and return it to the application. This export set

may contain multiple Standard Data Layers and filenames.

• Use TSLUtilityFunctions::exportData to export each Data Layer in the

export set.

• Destroy the export set and related Data Layers since they are no longer

required.

The processing that occurs in the TSLInteropManager methods is highly configurable.

See the detailed online documentation of TSLInteropConfig for further details.

12.10.1 MapInfo MIF/MID Format

This format is a pair of simple ASCII files, one (MIF) file contains the geometry and

meta-data; the other (MID) file contains the attributes for each geometric entity. Like

TMF, MIF files can contain a mixture of entity types and it therefore provides a good

match. Unless the data to be exchanged contains Bordered Polygons, it may not be

necessary to process the data using the Interop Manager.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 117 AUM1107

 Commercial in Confidence

MIF files can contain rendering information. Since the MapLink and MapInfo styles are

different, a mapping between the two sets of styles must be defined. The default

mapping is in the “<MAPLINK_HOME>\config\mifinteroperability.ini” file, which

should be passed to the TSLUtilityFunctions::importData method. Details of each

mapping are defined in comments in the file.

12.10.2 OS MasterMap Format

This format is an XML file based upon GML 2.1.2. Like TMF, OS MasterMap files can

contain a mixture of entity types. This format is mainly supported for the Seamless

Layer Management of the MasterMap data. It usually does not require processing using

the Interop Manager.

For change only update files, a departed feature is identified as a TSLSymbol instance

with a featureID of (-255) and the topological ID (TOID) stored in the entityID.

MasterMap files can contain many attributes that may not be of interest. The set of

attributes to be imported must be defined. The default mapping is in the

“<MAPLINK_HOME>\config\OSMasterMap.ini” file, which should be passed to the

TSLUtilityFunctions::importData method. Details of each entry are defined in

comments in the file. The TOID, Feature Code, Version and Type attributes are always

imported. Note that on Ordnance Survey advice, any primitives with the ‘broken’

attribute set true will be ignored.

• The TOID may be accessed using TSLEntityBase::entityID.

• The Feature Code may be accessed using TSLEntityBase::featureID.

• The Version may be accessed using TSLEntityBase::version.

• The Type attribute is used to determine which Entity type to create.

12.10.3 ShapeFile Format

This format is a complex binary format (.shp) file, with an associated database (.dbf)

file. Every object in the file must be of the same entity type and so a typical TMF file,

which is usually heterogeneous, will need processing using the Interop Manager.

12.10.4 OS NTF LandLine Format

This format is a simple ASCII file. The filter does not require a Feature Mapping array

and does not import or export attributes. The featureID stored on the Entity is assumed

to be the NTF LandLine feature code for import and export.

12.10.5 Attribute Information

Attribute data from directly imported vector data is held on the TSLDataset object on

each entity.

Firstly, obtain the TSLEntitySet from the TSLStandardDataLayer that the source data

was imported into. This should then be iterated through, checking the entity

type, recursing, if necessary, i.e. if the entity is another TSLEntitySet.

Note: For the SHP data format, as it is a flat format, it should only contain entities of a

single type, for example a shapefile rivers.shp would only contains lines, a shapefile

countries.shp would only contains polygons, etc…

Retrieve the TSLDataSet object from the TSLEntity. The attribute data is held

in TSLVariants accessed by keys and fields on the dataset.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 118 AUM1107

 Commercial in Confidence

At this point it is necessary to have some knowledge of the attributes that you're

expecting to find. For example, the rivers.shp shapefile may contain the following

attribute fields:

• RIVER_

• RIVER_ID

• NAME

• SYSTEM

Note: The shapefile specification does not say what attributes are present or should be

present. The attributes could be different in each file.

From the TSLDataSet the number of available keys/fields can be determined and then

the keys and/or fields accessed by index using the functions:

• getAvailableKey

• getAvailableField

Obviously, for the rivers.shp file above the number of available keys/fields returned

would be four.

The keys and fields are returned as TSLSimpleStrings. So, if the contents of the NAME

attribute are required, iterate through the TSLDataSet retrieving the Available Fields

until a field called NAME is returned. Then retrieve the actual data using one of

the getData functions.

The following code snippet retrieves the Name attribute data (i.e. the actual name of the

river, e.g. Amazon) and sets it into the entity name property:

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 119 AUM1107

 Commercial in Confidence

12.11 Seamless Layer Management

Seamless Layers are made up of TMF tiles defined on a nominal regular grid. Each tile

contains non-clipped Entities that can extend beyond the regular grid boundaries of the

tile. When used in a map, MapLink will automatically handle display of Entities stored in

these tiles and will transparently load any overlapping tiles. Render Levels should be

used to ensure that polygons and lines do not overlap. All entities must have a unique

reference stored in the entityID. In a typical use, this will be the TOID of an OS

MasterMap entity.

The basic process for using Seamless Layers is:

• Create a map in MapLink Studio with all relevant parameters set up – such

as Output Coordinate System. It is usual to have an overview layer, and a

// Entity Set off of StandardDataLayer containing imported shp file rivers.shp

if (TSLEntitySet* set = TSLEntitySet::isEntitySet(m_stdDataLayer->entitySet())

{

 int setSize = set->size();

 for(int i(0); i < setSize; ++i)

 {

 // Get each entity in the set

 // Ideally the entity type should be checked for Entity Set

 // and recursed if found

 // In this code sample I know all entities are TSLPolylines

 if (TSLEntity* entity = (*set)[i])

 {

 // Retrieve the TSLDataSet from the entity

 const TSLDataSet* dataSet = entity->dataSet();

 if(dataSet)

 {

 // Iterate through the available fields

 // In the rivers.shp file there are four fields, RIVER_, RIVER_ID,

 // NAME & SYSTEM

 int dsetNumFields = dataSet->numAvailableFields();

 for(int j(0); j < dsetNumFields; ++j)

 {

 TSLSimpleString fieldName;

 dataSet->getAvailableField(j, fieldName);

 // In this code sample we are interested in the NAME field

 if (fieldName == "NAME")

 {

 // Extract the data from the field

 // In this case the name of the river as a string

 const TSLVariant *variant = dataSet->getData(fieldName.c_str());

 if(variant)

 {

 int len = variant->getValueAsString(0, 0, 0) ;

 char * buf = new char[len + 1] ;

 variant->getValueAsString(buf, len) ;

 // Do something with the data

 entity->name(buf);

 }

 }

 }

 }

 }

 }

}

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 120 AUM1107

 Commercial in Confidence

defined TMC to Map Unit factor. The seamless layer will be added after

the map is generated by MapLink Studio.

• Create an instance of the TSLSeamlessLayerConfig object and populate it

with your required parameters. See the detailed online documentation for

further information.

• Create an instance of the TSLSeamlessLayerManager object and call

initialiseNewDetailLayer, passing the TSLSeamlessLayerConfig

object and the full pathname of the .map file. This call will create a

parallel directory if necessary, containing files for fast spatial queries and

TOID lookups.

• Call addLayerToMap on the TSLSeamlessLayerManager object, passing in

the full path of the rendition file to use when drawing the seamless layer.

These files can be generated by setting up feature-based rendering for the

feature IDs present in the source data on a TSLStandardDataLayer and

then calling saveRendering. See section 10.6.3 for more information.

• Import each source data file using the Interoperability functions.

• Pass the imported data to the ingestData method of the

TSLSeamlessLayerManager, which will process it and put the primitives

into the appropriate tile. The manager will use the entityID of the

primitives to identify each object and will transparently handle multiple

instances of the object, deleted objects (see section 12.10.2) and cases of

objects moving between tiles. The ingestData method also takes a flag,

allowRegression, which can be used to support reverting TOIDs to earlier

versions. By default, this flag is false, and regression is not supported. By

setting it to true, it is the user’s responsibility to ensure that the import

data set contains only out-of-date TOIDs that are required to facilitate the

regression. It should be regarded as an operational procedure to ensure

that the import data set is correct.

• Once the required data has been imported, call finalise on the

TSLSeamlessLayerManager, which will perform a final update of inter-tile

cross-references and create a .pth file indicating in which sub-directory

tiles may be found. This .pth file should be merged with the original one

that was generated by MapLink Studio.

• When importing tiles in bulk, it may be necessary to spread the data

import process over several runs. This is ok, if a call to the finalise

method is made before the map is used by the run-time environment. If

this is not done, then the map may be in an inconsistent state. For safety,

it is recommended that initialiseExistingLayerForIngest be called on

subsequent runs rather than initialiseNewDetailLayer. The latter will

still work if the specified configuration matches.

• For bulk processing, it is recommended all files imported are in a similar

geographic area, in order to make the best use of the caching. For similar

reasons, it is recommended that finalise is called after importing a

reasonable amount of data – for example 200MB of contiguous OS

MasterMap compressed GML. Between the processing of each source file it

is recommended that update is called on the TSLSeamlessLayerManager,

especially if the individual source files are large (e.g. 50Mb of compressed

OS MasterMap GML). This will cause the TSLSeamlessLayerManager to

perform additional intermediate processing that can be done before

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 121 AUM1107

 Commercial in Confidence

finalisation and will result in reduced memory usage during the import

process.

In addition to this basic process, there is additional functionality which allows users to

work in a temporary directory hierarchy, thus retaining the original map until expressly

overwritten. This is known as publishing.

The process for publishing is as follows:

• Once data has been imported and finalised the map can be preserved by
passing true to the enablePublishing method of the

TSLSeamlessLayerManager. Once set, publishing remains enabled until

explicitly disabled, by passing false to the enablePublishing method.

• Data can now be imported and finalised as described in the basic process.

These changes are stored in a temporary directory hierarchy, so that the

original map remains unaltered and can be used.

• Once the user is satisfied that the changes made are correct, the original

map can be overwritten with the new map by calling the publish method

on the TSLSeamlessLayerManager.

In order to copy data from one area to another, or in order to merge data, replication

can be used. The process is as follows:

• After initialising a layer, initialise a new replication session by calling

initialiseNewReplication on the TSLSeamlessLayerManager.

• Import and finalise data as described in the basic process.

• Replicate data by calling replicate on the TSLSeamlessLayerManager. This

method takes a destination directory. The destination directory must

already exist – if it does not this method will fail and return false. If no

.rpl file (which stores information about a previous replication session)

exists in the destination directory, this method simply copies the files

associated with the current replication session to the destination directory.

If an .rpl file exists in the destination directory the two replication sessions

are merged and files which are copied include those files which, although

perhaps unaltered by the present replication session, were altered in the

first.

• Note that replicate must be called after finalise.

• Note also that a replication session persists until

initialiseNewReplication is called or the application is restarted. This

means that subsequent calls to replicate can be made and each time more

files will be copied, until initialiseNewReplication is called.

In cases where it is important to ensure that the versions of entities remain in step, the

import of data into a layer can be restricted to ‘compatible’ data. For this to function as

expected, users must ensure that the version numbers and source IDs of entities are

kept up to date when the entities are edited. In order to do this, the entity’s source ID

must be set to the entity’s current version. The entity’s version must be updated as

follows:

 newVersion = -(abs(currentVersion)+1)

If entities have had their version numbers updated appropriately when being edited a

call to importCompatibleData, rather than ingestData, will check that version numbers

have remained in step and that entities that are imported have not been based on out-

of-date or obsolete versions. A call to importCompatibleData is passed a

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 122 AUM1107

 Commercial in Confidence

TSLStandardDataLayer and a TSLSLMImportResult. The method returns true if

successful. If unsuccessful due to entity version conflicts the TSLSLMImportResult is

populated with the entity IDs of those entities which caused the failure. Note that in

order for any data to be imported the check of entity IDs must pass for all entities in the

data.

Like ingestData, importCompatibleData also allows forced regression. The

allowRegression flag defaults to false but can be set to true to support reverting TOIDs

to earlier versions. As with ingestData, it is the user’s responsibility to ensure that the

import data set contains only out-of-date TOIDs that are required to facilitate the

regression. It should be regarded as an operational procedure to ensure that the import

data set is correct.

12.11.1 Remote Seamless Layer Manager

This component is a server-side implementation of the Seamless Layer Manager, useable

via a Web Service.

12.11.2 Validating an OS MasterMap Seamless Map

A map using a Seamless Detail Layer created from OS MasterMap data can be checked

for correctness using the fvdsvalidator command line utility. This utility uses Feature

Validation Data Set (FVDS) files that contain a list of the expected state of each of the

features in the map and compares this state against the state of each feature in the

map.

From this comparison a comma separated value (CSV) error report file is generated

which will contain a list of each of the features that differ from the expected state

provided by the FVDS files and how they differ.

For usage instructions run the fvdsvalidator utility with no arguments. This will print a

list of accepted arguments and other useful information.

12.12 Layer History Management

The core MapLink SDK allows data layers to maintain a version history. Currently, layer

history is restricted to map data layers that contain Seamless Detail Layers. Using the

‘publish and archive’ features of the Seamless Layer Manager, it is possible to capture

the history of changes applied to the map. It is then possible to rollback the map to any

point in time using the new data layer ‘flashback’ mechanism. It is also possible to

query the data layer for the version history of any extent within the layer.

The following shows the typical steps required in order to create and maintain a map

layer with history information (error handling is omitted for brevity):

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 123 AUM1107

 Commercial in Confidence

12.13 Filter Data Layers

The MapLink Filter Data Layer provides a simpler interface than the interoperability

described earlier in this section and is intended to be intuitive to users familiar with

MapLink Studio. Currently the Filter Data Layer only supports two input formats; NITF

and raster images. A user should create a Filter Data Layer for each data file that they

intend to display at the same time. In MapLink Studio a user would organise their data

files into datasets and layers, but it is intended that mimicking the organisation of layers

should be handled by the application.

The other main difference compared to MapLink Studio is the concept of ‘Display Items’

which were introduced to better support the loading of NITF data. A display item is a

sub-object within the data file, be it a raster or vector item. When loading raster data,

only one Display Item will exist, while a NITF file may contain hundreds.

The steps needed to use the basic functionality of the Filter Data Layer are as follows

TSLSeamlessLayerManager* slm = ...;

slm->enablePublishing(true, dir); // Publishing must be enabled

slm->initialiseExistingLayerForIngest(mapPath, layerName);

TSLStandardDataLayer* layer = ...;

// Load the map data into ‘layer’

TSLUtilityFunctions::importData(layer, ...);

// Import the layer into the seamless layer manager

slm->ingestData(layer);

// Finish the import process

slm->finalise();

TSLTimeType timestamp;

_time64(×tamp); // The timestamp to attach to this version

// Query the map’s history

TSLVersionHistorySet const* history = map->versionHistory();

// Get the version number that will be used when the next archive

// is created.

TSLHistoryVersion version = history->getCurrentArchiveVersion();

// We store the archives in a hierarchical tree based on the

// version number e.g. <rootArchiveDir>\1\, <rootArchiveDir>\2\,

// <rootArchiveDir>\3\, etc. where <rootArchiveDir> is the root

// directory that contains the archives for the layer e.g.

// ‘c:\MyMap\archives\LayerA\’.

char buffer[16] = { ‘\0’ };

sprintf(buffer, “%d”, version);

string archiveDir = rootArchiveDir;

archiveDir += buffer;

// The manager will automatically increment the archive version

// number that is to be used for the next archive

slm->publishAndArchive(archiveDir.c_str(), timestamp);

slm->enablePublishing(false); // Finished publishing

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 124 AUM1107

 Commercial in Confidence

• Create the required TSLFilterDataLayer derivative

• Unlock the data format, if required, using the unlockSupport function.

• Set the temporary directories used to store intermediate files using the

setDirectories function if required.

• Load the data file

• Set the output coordinate system and/or linear transform on the layer if

required

• Set the input coordinate system and/or geo-location on each display item.

These can be retrieved by querying the layer using the getDisplayItemAt

function.

• Add the layer to a drawing surface for display

The loaded data can be saved to file in a standard format by querying the Display Item

for the internal MapLink Data Layer they represent. A Display Item containing raster

data will return a TSLRasterDataLayer and a vector Display Item, a

TSLStandardDataLayer.

The following is an example of using this layer:

 // Load tsltransforms.dat this only needs to be done once at application
 // startup.
 TSLCoordinateSystem::loadCoordinateSystems();

 // Create a Filter Data Layer which uses the GeoTIFF Filter
 m_filterDataLayer = new TSLRasterFilterDataLayer(TSLFilterTypeGeoTIFF,
 "GeoTIFFFilter");

 // Raster processing options these are the same as you find in MapLink Studio
 m_filterDataLayer->rasterSplitThreshold(256);
 m_filterDataLayer->rasterPyramidOptions(TSLRasterInterpolationBilinear, false,
 TSLRasterTypePNG, 2);

 // Tell the layer how many threads you want to use when re-projecting the
 // raster.
 m_filterDataLayer->setRasterThreadingOptions(0, 0);

 // You can reduce the resultant image to 8 bit with 256 colours by
 // uncommenting this line
 //m_filterDataLayer->rasterOptions(24, 256);

 // Set the Output coordinate transform
 // This matches the Natural Earth World map that is shipped with MapLink.
 const TSLCoordinateSystem *dynArcCS =
 TSLCoordinateSystem::findByName("Dynamic ARC Grid");
 TSLCoordinateSystem *outputCS = dynArcCS->clone(1000);
 outputCS->setTMCperMU(50.0);
 m_filterDataLayer->setCoordinateSystem(outputCS);

 // Load the data.
 m_filterDataLayer->loadData(pathToGeoTiff.c_str());

 // Query the first display item - note there could be more than one.
 TSLFilterDataLayerDisplayItem *displayItem =
 m_filterDataLayer->getDisplayItemAt(0);

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 125 AUM1107

 Commercial in Confidence

 // You should set any additional processing options at this stage.
 //
 // This could be what the input coordinate system is or the geo-location.
 // In the case of the GeoTIFF filter this is not necessary.
 //
 // rasterItem->setInputCoordinateSystem(inputCS);
 // rasterItem->setGeolocation(0.0, 0.0, 700000.0, 1300000.0);

 // Process the layer... if you do not call this the layer will be processed on
 // first draw.
 m_filterDataLayer->process();

 // Save the processed data so we can load it rather than re-process.
 // - you need to know if it is vector or raster on reload so that you can
 // create either a TSLStandardDataLayer or TSLRasterDataLayer
 displayItem->saveDataLayer(locationToSaveProcessedDataTo.c_str(),
 TSL_MAPLINK_DEFAULT_VERSION, TSLRasterTypePNG, 2);

 // Add the layer to a drawing surface
 m_surface->addDataLayer(m_filterDataLayer, "filterlayer");

The processing of large amounts of raster data can take some time, it is therefore

recommended that the processing takes place in a background thread. If you take this

approach do not add the layer to a drawing surface until after the processing has been

completed. The layer must be owned by the thread which owns the drawing surface.

We would recommend that you only process one layer at a time in a background thread.

12.14 Web Map Service Data Layer

The MapLink Web Map Service Data Layer is a Data Layer that allows efficient loading of

Open Geospatial Consortium (OGC) standardised Web Map Servers (WMS). The layer

currently supports the loading of raster data from remote WMSs that implement version

1.1.1 of the standard, although future MapLink releases may support further versions.

Although setting up the layer is similar to the use of other MapLink Data Layers, due to

the use of a multi-threaded file loader, issues surrounding thread safety may need to be

taken into consideration. The MapLink C++ API tries to ensure this safety using const

methods so that the user can modify variables that may break thread safety only when

permitted. The .NET APIs follow similar rules but enforce them by returning failures from

methods that may not be called if they break the thread safety. Refer to the API

documentation for more information on these methods.

To setup the layer the user must provide an implementation of a callback class which is

polled whenever the layer needs additional information. Each of the methods in this

callback class provides sufficient parameters for the user to modify the layer details and

will always occur in a thread safe manner. Settings should not be changed when the

process is not currently executing one of the callback methods.

The layer also supports the use of layer dimensions and styles along with all the other

service parameters supported by the WMS standard. The only part of the standard that

is not supported by the MapLink WMS Data Layer is the use of the optional

GetFeatureInfo request.

A good starting point when developing using the WMS Data Layer is to refer to the

WMSClientSample supplied with MapLink. It demonstrates how to use the WMS in a

thread safe manner and permits the setting of WMS dimension and style settings.

Commercial in Confidence

 Advanced Features of the Core SDK

© 2021 Envitia Ltd 126 AUM1107

 Commercial in Confidence

There are certain limitations with its use in conjunction with MapLink 3D drawing

surfaces due to the coordinate system support.

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 127 AUM1107

 Commercial in Confidence

13 OpenGL Drawing Surface

The OpenGL drawing surface allows an application to take advantage of hardware

acceleration to enable high performance visualisations on both desktop and mobile

platforms. In many circumstances it can be used as a drop-in replacement for the GDI-

based and X11-based drawing surfaces from the Core SDK.

13.1 Library Usage and Configuration

The OpenGL surface comes in either Debug or Release configuration. It should be noted

that the library to be linked with should be determined by the Core SDK library that you

are using within your application. For example, if you are using the Release mode, DLL

version of the Core SDK (MapLink64.lib) then you must also use the equivalent

OpenGL surface library (MapLinkOpenGLSurface64.lib).

MapLinkOpenGLSurface64.lib
Release mode, DLL version.
Uses Multithreaded DLL C++ run-time library.

Must also link the MapLink CoreSDK library
MapLink64.lib

Requires TTLDLL preprocessor directive.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing. Where X.Y is the version of
MapLink you are deploying.

MapLinkOpenGLSurface64d.lib
Debug mode, DLL version.
Uses Debug Multithreaded DLL C++ run-time
library.

Must also link the MapLink CoreSDK library
MapLink64d.lib

Requires TTLDLL preprocessor directive.

No redistributable run-time available.

KEYED: Development machines only.

13.2 Hardware Requirements

The OpenGL surface requires OpenGL 2.1 or later (for desktop) or OpenGL ES 2.0 (for

mobile/embedded) compliant hardware in order to function. Systems that do not meet

this requirement should use either the TSLNTSurface on Windows or the

TSLMotifSurface on X11 platforms.

Note: Integrated motherboard chipsets, such as Intel Integrated Graphics,

should be avoided if at all possible for desktop/laptop applications.

The table below lists any additional extensions that will be used by the surface

depending on the OpenGL version it is running on. Recommended extensions are not

required in order for the surface to operate but may have a negative impact on

performance or functionality if not present.

OpenGL

Version

Required Extensions Recommended Extensions

2.1 EXT_framebuffer_object or

ARB_framebuffer_object

NV_primitive_restart1

ARB_texture_multisample2

3.2 None EXT_direct_state_access1

ES 2.0 None OES_standard_derivatives3

OES_element_index_uint4

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 128 AUM1107

 Commercial in Confidence

These extensions allow for improved performance if present but do not affect the

functionality offered by the drawing surface.

Without this extension multisample anti-aliasing cannot be applied to buffered or

transparent layers.

If this extension is not present very large pieces of text (> 150 pixels) may have

noticeable aliasing.

If this extension is not present the surface is limited to rendering polygons or polylines

with a maximum of 65536 coordinates. Any polygons or polylines with more than this

number of coordinates will not display correctly. This is a hardware limitation.

13.3 Where to Begin?

The first question to ask is whether the OpenGL surface is suitable for your application.

There are several points to consider when answering this question, including:

The availability of hardware acceleration on the target devices. An application

intended to run primarily on virtual machines or very old hardware will likely not gain

any benefit using the OpenGL surface over the TSLNTSurface or TSLMotifSurface.

Any custom rendering the application will perform. If the application contains a

large amount of GDI or Xlib rendering code it will be more difficult to integrate the

OpenGL surface into the application than the TSLNTSurface or TSLMotifSurface.

Additionally, the overhead of merging the output of the two separate rendering APIs may

outweigh any performance improvements gained from using hardware acceleration.

Any requirements on identical rendering output on different hardware. OpenGL

does not require implementations to produce identical outputs from the same set of

rendering commands, so the same application will produce slightly different output when

run on different hardware. These differences are not usually visible to the eye but will

show up when performing a binary comparison between the output of different systems.

Developer familiarity with OpenGL. The drawing surface is not a complete graphics

engine; therefore, some knowledge of OpenGL is necessary to implement any custom

drawing required beyond that offered by the MapLink rendering API

(TSLRenderingInterface and geometry).

13.3.1 Graphics Drivers

When using the OpenGL drawing surface, it is vitally important to use up-to-date

graphics drivers for your hardware. Old graphics drivers can have missing features,

poorer performance and bugs that can cause the drawing surface to malfunction or

render incorrectly. Upgrading to the newest graphics drivers for your hardware should

always be first step in diagnosing problems.

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 129 AUM1107

 Commercial in Confidence

13.3.2 Which Class Should be Used?

The OpenGL surface is accessed through a variety of window system interface classes,

similar to how TSLNTSurface provides an interface between MapLink and Windows-based

systems and TSLMotifSurface provides and interface between MapLink and X11-based

systems.

The interface classes for the OpenGL surface are named based on the interface they use

as follows:

Windowing System Applicable OpenGL Surface Classes

Windows TSLWGLSurface

X11 TSLGLXSurface

Embedded/Mobile TSLEGLSurface

TSLNativeEGLSurface1

This class may not be present on all platforms - see the Release Notes for your platform

for more information.

The TSLOpenGLSurface class contains the common functionality across all platforms.

13.3.3 What is the Difference Between TSLEGLSurface and
TSLNativeEGLSurface?

On some embedded platforms there is a choice between these two window system

interface classes. Both are intended to be used with OpenGL ES 2.0 systems via EGL,

however TSLEGLSurface does not link against the system EGL library and thus cannot

create or manage OpenGL contexts itself. This makes it usable across multiple different

systems with different EGL libraries, whereas TSLNativeEGLSurface is tied to a specific

EGL implementation.

Generally, you should use TSLNativeEGLSurface when:

• You want the easiest way of creating a MapLink drawing surface.

• You are not integrating with other code that performs its own OpenGL

context management.

You should use TSLEGLSurface when:

• TSLNativeEGLSurface is not available.

• You wish to manage all OpenGL contexts yourself.

Unlike the other window system interface classes, TSLEGLSurface only has one

constructor that takes no arguments. This creates the drawing surface in a detached

state (where it is not associated with an OpenGL context), so the attach method must be

called from a thread that has the OpenGL context to use bound to it. For the

TSLEGLSurface the requiresDisplayMetrics method will always return true, so the

application must call setDeviceCapabilities or setDisplayMetrics with the

appropriate values before any drawing is performed.

13.3.4 Additional Data Layers for use with the OpenGL Surface

When using the OpenGL drawing surface to display maps created by MapLink Studio,

applications have a choice of two data layers, the TSLMapDataLayer and the

TSLStaticMapDataLayer. Each layer offers a different trade-off between features and

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 130 AUM1107

 Commercial in Confidence

performance, so the best choice for an application depends on how the layer will be

used. Section 13.6 covers the differences between these layers and when an application

would want to use each one.

13.4 Realtime Reprojection

The OpenGL Drawing Surface supports the concept of reprojecting vector and raster at

runtime on the GPU allowing for the projection centre to change for every frame.

The following projections are currently supported:

• Mercator

• Transverse Mercator

• Stereographic

• Gnomonic

Additional projections can be added if necessary, please contact sales@envitia.com to

discuss.

This functionality relies upon OpenGL extensions that require an up to date OpenGL

driver and modern hardware.

This MapLink Pro extension has been implemented for the Haswell 4600 GPU on Linux.

Extensive testing has been done with this GPU and several issues have been found and

workarounds were implemented. Several issues were resolved at the driver or lower

level. As such we would recommend that the developer tests the target hardware early

enough to ensure that the GPU and drivers are sufficiently capable and robust for this

MapLink Pro extension. If necessary, we can provide consultancy to help with this

assessment or any necessary tailoring in MapLink to support a particular GPU.

OpenGL 3.3 is required with the following OpenGL extensions:

• ARB_transform_feedback2

• ARB_shading_language_420pack

• ARB_draw_indirect

• ARB_gpu_shader_fp64 (FP64)

• ARB_shader_subroutine

There are fallback mechanisms for all the above extensions, however the fallbacks have

an impact on performance and complexity of the shaders.

The FP64 extension is one of the more critical extensions. Only a small number of the

projections are supported if this extension is not present as we must emulate the 64bit

double maths. This significantly complicates the shader code.

The following extensions are used if present:

• ARB_texture_storage

• ARB_shader_image_load_store

For additional information please refer to the MapLink Pro API documentation for the

class TSLOpenGLSurface.

mailto:sales@envitia.com

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 131 AUM1107

 Commercial in Confidence

13.5 Walkthrough - The Simple OpenGL Surface Sample

A simple sample application that uses the OpenGL drawing surface is provided as part of

a MapLink installation in order to demonstrate the basics of using the OpenGL drawing

surface. The source code for this sample can be found in the

samples/Qt/SimpleGLSurfaceSample folder of the installation. This sample uses Qt 5.0.

There is also an MFC based sample based on the Simple Interaction sample to

demonstrate the minimal changes necessary to convert to the new Drawing Surface.

The source files for the sample have the following purposes:

• main.cpp contains the entry point for the application.

• mainwindow.cpp and .h contains event handlers for toolbar and menu

events, and is the class for the application's window.

• maplinkwidget.cpp and .h contain a simple custom Qt widget that the

MapLink drawing surface is attached to. This class handles interactions

with Qt events and callbacks, but uses the Application class below to

interact with the MapLink API.

• application.cpp and .h contain the code that interacts with the MapLink

API. This class is used by the widget above, but is split out into a seperate

class in order to make it easier to follow the interactions with the MapLink

API independently of interactions with Qt.

Visually, these items correspond to the following parts of the application:

MapLink Widget and Application

Main Window

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 132 AUM1107

 Commercial in Confidence

13.5.1 Starting the Application - Choosing a Framebuffer Configuration

For convenience, the sample uses Qt to create the OpenGL context that will be used by

the drawing surface. Before this context is created, we want to suggest to Qt that it uses

a framebuffer configuration with certain parameters. This happens inside main in

main.cpp with the following code:

Once we have done this, the main window for the application can be created and

displayed.

If we were letting the drawing surface create its own OpenGL context then the above

would not be needed as the drawing surface would internally select a suitable

framebuffer configuration.

13.5.2 Initialisation

When the main window of the application is created, this creates the custom widget (the

MapLink widget from maplinkwidget.cpp), which in turn creates the application class

(from application.cpp). These objects get constructed in this order:

1. MainWindow

2. MapLinkWidget

3. Application

The MainWindow constructor only deals with installing event handlers for the toolbar

button and menu entries - it doesn't contain any interactions with MapLink.

Similarly, the majority of the MapLinkWidget constructor deals with ensuring event

messages are propagated correctly to the widget. Additionally, it also instructs Qt to not

clear the drawing area automatically before any drawing occurs as we use the MapLink

drawing surface to do this.

The constructor of the Application class tells MapLink to load its configuration files

from an installation on the host machine by calling

TSLDrawingSurface::loadStandardConfig. This must be done before any MapLink

 // Qt will be creating the OpenGL context for us. In order for the

 // drawing surface to work at its best we ask it to choose a

 // framebuffer configuration with a specific set of

 // parameters.

 QGLFormat f;

 // Request a 24-bit depth buffer. A 16-bit depth buffer will also work.

 f.setDepthBufferSize(24);

 // Request a double-buffered configuration to eliminate flickering when

 // moving around the map

 f.setDoubleBuffer(true);

 // Request 4x multisampling anti-aliasing if supported by the hardware

 f.setSamples(4);

 // Request an OpenGL 3.2 core profile context if supported by the hardware

 f.setVersion(3, 2);

 f.setProfile(QGLFormat::CoreProfile);

 QGLFormat::setDefaultFormat(f);

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 133 AUM1107

 Commercial in Confidence

functionality can be used - without it maps cannot be drawn at all. This setup only needs

to be done once in the application - usually at start-up.

13.5.3 Creating the Drawing Surface

The next step is the creation of the drawing surface. Qt will call

MapLinkWidget::initialiseGL inside maplinkwidget.cpp to ask the widget to perform

any initial setup. The MapLink drawing surface doesn't interface with Qt directly, it uses

the underlying window handles from the operating system in order to allow it to be used

with different application toolkits. Therefore, a small amount of platform specific code is

needed in order extract these handles from Qt:

These window handles are passed to the Application class for it to use when creating

the drawing surface. The widget then calls Application::create in application.cpp to

create the MapLink drawing surface and attach it to the window handles it just queried.

Creating the drawing surface requires another small amount of platform specific code -

the exact type of drawing surface used depends on the platform the sample is being run

on:

 // Platform Specific Setup.

#ifdef X11_BUILD

if QT_VERSION < 0x50100

 // Extract the X11 information - QX11Info was removed in Qt5
 QPlatformNativeInterface *native =

QGuiApplication::platformNativeInterface();

 Display *display = static_cast<Display*>(native->nativeResourceForWindow(

"display", NULL));

 Screen *screen = DefaultScreenOfDisplay(display);

#else

 // Qt 5.1 introduced a different version of QX11Info for accessing widget native
 // handles
 int screenNum = DefaultScreen(QX11Info::display());

 Screen *screen = ScreenOfDisplay(QX11Info::display(), screenNum);

#endif

 // pass to the application as we will need for the Drawing Surface

 m_application->drawingInfo(display, screen);

#else

 // The MapLink OpenGL drawing surface needs to know the window handle to

 // attach to - query this from Qt

 WId hWnd = winId();

 // Pass the handle to the application so it can be used by the drawing

 // surface

 m_application->drawingInfo(hWnd);

#endif

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 134 AUM1107

 Commercial in Confidence

In both cases the application queries the active OpenGL context created by Qt and

instantiates a MapLink drawing surface, telling it to attach itself to this context.

The TSLOpenGLSurfaceCreationParameters class can be used to control the behaviour of

the MapLink drawing surface - in this case it's used to tell the drawing surface not to

perform buffer swaps after a draw as we have already told Qt that it should handle this.

Once the drawing surface is created, we check to make sure that the context method

returns a valid value - if this returns NULL then the drawing surface did not attach

successfully to the OpenGL context and cannot be used. The most common reason that

this might occur is if the OpenGL implementation on the system does not meet the

minimum requirements for the drawing surface.

Next, the application creates a data layer to load a map created by MapLink Studio into

and adds this to the drawing surface so that its contents will be drawn when the drawing

surface renders.

At this stage the data layer is still empty, so nothing will be drawn yet.

The final step is the creation of the MapLink interaction mode manager and interaction

modes.

 // Tell the drawing surface whether it will need to perform buffer swaps,

 // or whether it is handled externally. See the constructor of

 // MapLinkWidget.

 TSLOpenGLSurfaceCreationParameters creationOptions;

 creationOptions.swapBuffersManually(ML_QT_BUFFER_SWAP);

#ifdef X11_BUILD

 // Get the active OpenGL context to attach the drawing surface to

 GLXContext context = glXGetCurrentContext();

 GLXDrawable drawable = glXGetCurrentDrawable();

 // Create the Accelerated Surface object

 m_drawingSurface = new TSLGLXSurface(m_display, m_screen, drawable,

 context, creationOptions);

#else

 HGLRC context = wglGetCurrentContext();

 m_drawingSurface = new TSLWGLSurface((HWND)m_window, false, context,

 creationOptions);

#endif

 if(!m_drawingSurface->context())

 {

 // Error handling code

 }

 // Add a map data layer to the drawing surface

 m_mapDataLayer = new TSLMapDataLayer();

 // Set a cache size of 256Mb on the map layer to avoid reloading tiles

 // from disk too frequently

 m_mapDataLayer->cacheSize(256 * 1024);

 m_drawingSurface->addDataLayer(m_mapDataLayer, m_mapLayerName);

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 135 AUM1107

 Commercial in Confidence

The interaction modes are a set of premade event handlers that implement some

common methods of manipulating the view of a drawing surface based on user input. In

this case we set the manager up to have zoom to rectangle, pan to point and grab and

drag modes. The zoom to rectangle mode is set to be the default active interaction

mode.

13.5.4 Handling Window Resizing

Although attached to the widget, the drawing surface is still not in a valid state for

drawing as it has yet to be told how big the window to which it is attached is.

After MapLinkWidget::initializeGL has finished, Qt will immediately call

MapLinkWidget::resizeGL in maplinkwidget.cpp. This call is forwarded to

Application::resize in application.cpp, which updates both the drawing surface and

the interaction mode manager with the size of the window they are drawing to.

Now that the drawing surface knows the window size, it is fully initialised and ready for

drawing.

This same event sequence is used to handle changes to the window size while the

application is running, as the drawing surface must be notified of any changes to the

window to which it is attached.

 // Now create and initialse the mode manager and modes

 m_modeManager = new TSLInteractionModeManagerGeneric(this,

 m_drawingSurface);

 // Add the three interaction mode types to the manager - the zoom mode is

 // the default

 m_modeManager->addMode(new TSLInteractionModeZoom(ID_TOOLS_ZOOM),

 true) ;

 m_modeManager->addMode(new TSLInteractionModePan(ID_TOOLS_PAN),

 false) ;

 m_modeManager->addMode(new TSLInteractionModeGrab(ID_TOOLS_GRAB),

 false) ;

 // Display any errors that have occurred

 const char *errorMsg = TSLErrorStack::errorString();

 if(errorMsg)

 {

 // Error handling code

 }

 if(m_drawingSurface)

 {

 // Inform the drawing surface of the new window size,

 // attempting to keep the top left corner the same.

 // Do not ask for an automatic redraw since we will get a call to

 // redraw() to do so

 m_drawingSurface->wndResize(0, 0, width, height, false,

 TSLResizeActionMaintainTopLeft) ;

 }

 if(m_modeManager)

 {

 m_modeManager->onSize(width, height) ;

 }

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 136 AUM1107

 Commercial in Confidence

13.5.5 Drawing to the Window

When the sample's window needs to be redrawn, Qt will call MapLinkWidget::paintGL in

maplinkwidget.cpp. This in turn calls Application::redraw in application.cpp to

make the drawing surface draw all of the data layers inside it.

There is one data layer in the drawing surface - the TSLMapDataLayer we added inside

the Application::create method. Currently this has no map loaded, so drawing will

just clear the widget to the default background colour, which is white.

13.5.6 Loading a Map

When the Open Map toolbar button or menu item is selected, Qt invokes the registered

event handler for this action, which is MainWindow::loadMap in mainwindow.cpp. This

displays the operating system's standard open dialog to let the user choose the map to

load, and calls MapLinkWidget::loadMap in maplinkwidget.cpp to do the actual task of

loading.

The widget does three things when loading a map:

1. Instructs the application class to load the map into its TSLMapDataLayer.

2. Tells the application to change the view of the drawing surface to cover the

entirety of the new map, as the previous view of the drawing surface is unlikely

to provide a useful view of the new map.

3. Asks Qt to redraw the window so that the new map can be seen, triggering the

same call sequence as described in section 13.5.5.

The task of actually loading the data into the TSLMapDataLayer is done inside

Application::loadMap in application.cpp.

 if(m_drawingSurface)

 {

 // Draw the map to the widget

 m_drawingSurface->drawDU(0, 0, m_widgetWidth, m_widgetHeight, true);

 // Don't forget to draw any echo rectangle that may be active.

 if (m_modeManager)

 {

 m_modeManager->onDraw(0, 0, m_widgetWidth, m_widgetHeight);

 }

 }

 if(!m_mapDataLayer->loadData(mapFilename.c_str()))

 {

 QMessageBox::critical(m_parentWidget, "Failed to load map",

 mapFilename.c_str());

 return false;

 }

 if(m_modeManager)

 {

 // Loading a map invalidates any stored views in mode manager - this

 // sample doesn't create any

 m_modeManager->resetViews();

 }

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 137 AUM1107

 Commercial in Confidence

Changing the drawing surface view to cover the extent of the newly loaded map is done

inside Application::resetView.

The sample explicitly asks the drawing surface not to perform an immediate redraw as

this is handled by MapLinkWidget. Any rotation that has been applied to the drawing

surface by the sample is also removed.

13.5.7 Changing the View of the Map

Keyboard and mouse events that occur when the sample has focus are received by the

MapLinkWidget in the *Event methods inside maplinkwidget.cpp. Each of these

events is passed onto an equivalent event handler function inside the Application class

in application.cpp. In turn, the Application class forwards these events to the

MapLink interaction mode manager associated with the drawing surface. The manager

will change the current view of the map based on the active interaction mode.

The return value of the interaction mode manager indicates to the Application class if a

redraw is required based on the actions that have been taken. The Application passes

this flag back to the MapLinkWidget as the return value from the event handler

functions, which lets the MapLinkWidget trigger a redraw of the window when needed.

13.5.8 Changing the Active Interaction Mode

When the sample is started, the zoom to rectangle mode is the default interaction mode.

This can be changed through the toolbar buttons or corresponding menu items, which

invoke the registered action handlers in the MainWindow These actions are forwarded on

to the MapLinkWidget, which in turn forwards them on to the Application.

The Application instructs the interaction mode manager to change the interaction

mode using the unique identifiers assigned to each the interaction modes when they

were initially added to the interaction mode manager when it was created.

 if(m_drawingSurface)

 {

 // Reset the drawing surface rotation as well

 m_surfaceRotation = 0.0;

 m_drawingSurface->rotate(m_surfaceRotation);

 m_drawingSurface->reset(false);

 }

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 138 AUM1107

 Commercial in Confidence

13.6 Additional Data Layers for the OpenGL Surface

When using the OpenGL drawing surface applications can use an additional data layer

called the TSLStaticMapDataLayer. This data layer is an alternative to the

TSLMapDataLayer that does not support the more advanced features of the

TSLMapDataLayer, but in return offers significantly higher drawing performance.

The TSLStaticMapDataLayer lacks the following features of the TSLMapDataLayer:

• Runtime projection

• Flashback

• Support for dynamic renderers

• Persistent tile caches

If any of these features are required in an application then the TSLMapDataLayer should

be used, otherwise the TSLStaticMapDataLayer may be more suitable.

The API of the TSLStaticMapDataLayer is almost identical to that of the

TSLMapDataLayer so it is simple for an application to switch them as desired. The

primary difference between the two data layers is in the methods that control each

layer’s cache (cacheSize and clearCache). In the TSLStaticMapDataLayer this is split

into two different sets of methods, one used for drawing and one used for querying

(such as the findEntity or query methods).

In addition to allowing for finer control over the memory use of the layer, the split allows

for more flexible use of the data layer. Unlike the TSLMapDataLayer, with the

TSLStaticMapDataLayer an application may retain the results of a query operation while

the layer is redrawn as the separate caches mean changes to the drawing cache do not

void Application::activatePanMode()

{

 // Activate the pan interaction mode

 if(m_modeManager)

 {

 m_modeManager->setCurrentMode(ID_TOOLS_PAN) ;

 }

}

void Application::activateZoomMode()

{

 // Activate the zoom interaction mode

 if(m_modeManager)

 {

 m_modeManager->setCurrentMode(ID_TOOLS_ZOOM) ;

 }

}

void Application::activateGrabMode()

{

 // Activate the grab interaction mode

 if(m_modeManager)

 {

 m_modeManager->setCurrentMode(ID_TOOLS_GRAB) ;

 }

}

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 139 AUM1107

 Commercial in Confidence

affect the objects returned by a query. It is also possible to use the data layer query

methods on the TSLStaticMapDataLayer from a different thread to the one that the

layer is drawn in, provided the application takes care to ensure that methods that would

trigger a clearing of both caches (e.g. loadData) are not called without synchronisation

inside the application. Issuing queries from more than one thread against the same data

layer is not supported.

13.7 The Drawing Surface Coordinate System and Custom Data Layers

Separate from the coordinate system used for coordinate transformations in the drawing

surface and data layers via a TSLCoordinateSystem object, the OpenGL drawing surface

defines a different coordinate system that is used to map the OpenGL coordinate space

to the screen. When all rendering is performed through MapLink data layers and the

TSLRenderingInterface an application doesn't need to understand this coordinate

space - it is all taken care of internally. However, when the application performs its own

OpenGL rendering via a TSLCustomDataLayer or after MapLink has finished drawing it is

important to understand how to correctly position items relative to the map.

The OpenGL drawing surface defines this rendering coordinate space to be the TMC

extent of the area being rendered, without any drawing surface rotation or dynamic arc

scaling included, centred on 0,0 (centre of the screen). The TMC extent that this equates

to from the active TSLCoordinateSystem can be determined if required as follows,

although it is generally not needed:

As mentioned above, this extent is centred on 0,0 when mapped to the drawing surface's

rendering coordinate system (i.e., the bottom left of the envelope is equal to -

width()/2, -height/2 and the top right of the envelope is equal to width()/2.

height()/2). The bottom left and top right of this envelope map to the bottom left and

top right of the screen - therefore 0,0 in the rendering coordinate system always maps

to the centre of the screen.

 TSLDrawingSurface *surface = ...

 TSLEnvelope renderExtent;

 surface->getTMCExtent(renderExtent);

 if(surface->getOption(TSLOptionDynamicArcSupportEnabled))

 {

 // Dynamic arc is enabled, remove any scaling effect applied

 // to the envelope

 double tmcPerDUX = 0.0, tmcPerDUY = 0.0;

 surface->TMCperDU(tmcPerDUX, tmcPerDUY);

 renderExtent.scale(tmcPerDUY / tmcPerDUX, 1.0);

 }

 // renderExtent now contains the TMC extent of the surface's drawing

 // coordinate system in the active TSLCoordinateSystem of the drawing

 // surface

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 140 AUM1107

 Commercial in Confidence

13.7.1 Positioning Items In Practice

Like all OpenGL applications, the OpenGL drawing surface uses matrices to describe the

transformations to perform when rendering items to the screen. These are divided into

two matrices - the modelview matrix which describes any transformations to be applied

within the rendering coordinate system, and the projection matrix which maps the

results of this to a form OpenGL can interpret.

The drawing surface provides access to its matrices for the current or previous draw via

the modelViewMatrix and projectionMatrix methods on TSLOpenGLDrawingSurface.

The modelview matrix will already contain any drawing surface rotation or dynamic arc

scaling that apply for the draw. Additionally, for convenience it also provides access to

the TMC position that maps to 0,0 in rendering space via the coordinateCentreX and

coordinateCentreY methods. Note that the centre coordinates are returned as doubles

- they may not necessarily map to integer coordinate space.

The combination of these items allows for the construction of a modelview matrix that

will correctly locate an item being drawn relative to the map. Generally, object drawn via

OpenGL are object centred - i.e. their coordinates are defined relative to an origin local

to that object rather than relative to the active coordinate system. Since coordinates in

OpenGL must be provided in 32bit floats in most cases this is particularly important due

to precision - the MapLink TMC coordinate space uses 32bits of integer precision but

32bit floats only provide 24bits of integer precision. By Object-centring and translating

to the correct location during a draw the problem of jittery movement of objects when

operating near the edges of MapLink's TMC space does not occur.

Putting this all together, the code for positioning an object centred item for drawing

inside a TSLCustomDataLayer might look like the following:

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 141 AUM1107

 Commercial in Confidence

13.7.2 Interspersing Custom Rendering with MapLink Rendering

The OpenGL drawing surface will internally change the order or defer drawing for

performance reasons, using OpenGL's depth buffer to ensure items appear in the correct

order on screen. When all rendering inside a custom data layer is performed by MapLink

or implemented by the application there is no problem, and everything will work as

expected. However, when mixing both MapLink rendering and custom rendering within

the same data layer application drawn items may not necessarily appear in the expected

order relative to the items drawn through MapLink.

In the simple case where all of the application rendering in the data layer occurs after all

MapLink rendering, the application can use the flushPendingDraws method on

TSLOpenGLSurface to ensure all MapLink draw commands have been sent to the GPU

command stream before beginning application rendering. This might look as follows:

bool MyCustomLayer::drawLayer(TSLRenderingInterface *renderingInterface,

 const TSLEnvelope* extent,

 TSLCustomDataLayerHandler& layerHandler)

{

 TSLOpenGLSurface *surface = reinterpret_cast<TSLOpenGLSurface*>(

 layerHandler.drawingSurface());

 // This contains the TMC location of the centre of the object

 // in the drawing surface's active coordinate system

 TSLCoord objectTMCPosition = calculateObjectPosition();

 // Determine the modelview matrix to position the object

 // in the right place relative to the current drawing.

 Matrix modelViewMat(surface->modelViewMatrix());

 modelViewMat.translate(objectTMCPosition.x() –

 surface->coordinateCentreX(),

 objectTMCPosition.y() –

 surface->coordinateCentreY());

 if(removeDynamicArcScaling)

 {

 // This will remove the effect of dynamic arc (if active)

 // from any subsequent transformations.

 double tmcPerDUX = 0.0, tmcPerDUY = 0.0;

 surface->TMCperDU(tmcPerDUX, tmcPerDUY);

 modelViewMat.scale(tmcPerDUX / tmcPerDUY, 1.0);

 }

 // Upload the matrices to OpenGL

 surface->stateTracker()->useProgram(m_program);

 glUniformMatrix4fv(m_modelViewUniform, 1, GL_FALSE,

 modelViewMat.matrix());

 glUniformMatrix4fv(m_projectionUniform, 1, GL_FALSE,

 surface->projectionMatrix());

 // Now draw the object

 ...

 return true;

}

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 142 AUM1107

 Commercial in Confidence

If the custom rendering is mixed in with MapLink rendering, then it can often be

beneficial to make use of the depth buffer to ensure ordering in the same way that the

drawing surface does. To assist in this the TSLOpenGLSurface provides the

acquireDepthSlice method which can be used to reserve one or more depth buffer

values for custom rendering use. The value returned is the depth in OpenGL's normalised

device coordinate space, which since the OpenGL drawing surface uses an orthographic

2D projection and so has no perspective division is also OpenGL's clip space. The value

can therefore be assigned directly to either gl_FragDepth in the application’s fragment

shader or to gl_Position.z in the application's vertex shader.

In the following examples depthValue is the value obtained from calling

acquireDepthSlice:

bool MyCustomLayer::drawLayer(TSLRenderingInterface *renderingInterface,

 const TSLEnvelope* extent,

 TSLCustomDataLayerHandler& layerHandler)

{

 TSLOpenGLSurface *surface = reinterpret_cast<TSLOpenGLSurface*>(

 layerHandler.drawingSurface());

 // This function performs rendering through the rendering interface

 doMapLinkDrawing(renderingInterface);

 // Ensure all MapLink rendering is done before we continue

 surface->flushPendingDraws();

 // Custom application rendering in this case does not use the

 // depth buffer

 surface->stateTracker()->disableDepthTest();

 // Custom application rendering occurs in here

 doMyCustomRendering();

 surface->stateTracker()->enableDepthTest();

 return true;

}

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 143 AUM1107

 Commercial in Confidence

When using the depth buffer in this fashion it is not necessary to call

flushPendingDraws in order to ensure correct ordering. Depth buffer values obtained in

this fashion only apply to the current data layer being drawn as the depth buffer will be

cleared when drawing each data layer.

13.8 Transparency

In addition to per-layer transparency, the OpenGL drawing surface also allows for per-

entity transparency via the TSLRenderingAttributeEdgeOpacity,

TSLRenderingAttributeExteriorEdgeOpacity, TSLRenderingAttributeFillOpacity,

TSLRenderingAttributeTextOpacity and TSLRenderingAttributeSymbolOpacity

rendering attributes.

When using per-entity transparency, correct visualisation requires that strict back-to-

front rendering order is used, however for performance reasons MapLink may internally

rearrange the order items are drawn in. This may sometimes lead to the following

situation:

// Vertex shader example - this method can be used on OpenGL ES 2.0 systems

// where gl_FragDepth is not available

#version 150 core

uniform float depthValue;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

in vec2 vertexPosition;

void main()

{

 gl_Position = (projectionMatrix * modelViewMatrix) * vec4(vertexPosition,

 0.0, 1.0);

 gl_Position.z = depthValue;

}

// Fragment shader example

#version 150 core

uniform vec4 colour;

uniform float depthValue;

out vec4 pixelColour;

void main()

{

 gl_FragDepth = depthValue;

 pixelColour = colour;

}

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 144 AUM1107

 Commercial in Confidence

This image contains four rectangles in the following order:

1. An opaque blue rectangle with black opaque edges.

2. A partially transparent green rectangle with black opaque edges.

3. A red rectangle with a patterned fill style with black opaque edges.

4. A partially transparent cyan rectangle with black opaque edges.

With this ordering, the patterned red rectangle should be visible through the partially

transparent cyan rectangle, however after reordering the rectangles were drawn in this

order:

1. The black opaque edges for all four rectangles.

2. The opaque blue rectangle fill.

3. The partially transparent green rectangle fill.

4. The partially transparent cyan rectangle fill.

5. The patterned red rectangle fill.

When drawn in this order, the section of the patterned red rectangle that should be

visible through the partially transparent cyan rectangle has not been drawn at the point

the cyan rectangle is rendered, so this rectangle's colour was blended with the opaque

blue rectangle instead of the patterned red rectangle. Effectively it was drawn as if the

patterned red rectangle did not exist. When the patterned red rectangle is drawn at the

end, the section covered by the partially transparent cyan rectangle does not get drawn

again as it is considered to already be obscured by an object in front (the cyan

rectangle).

MapLink attempts to minimise the situations where this might occur. Specifically, it can

only occur when all of the following conditions are true:

• Rendering that occurs within the same MapLink data layer.

• For data layers that contain multiple tiles (e.g. a TSLMapDataLayer),

rendering that occurs within the same tile.

• Rendering that occurs at the same render level.

• Rendering that occurs at the same rendering pass (for multi-pass

linestyles).

• The overlapping transparent items use different fill or line styles, or are

different types of rendering (e.g. a polygon's fill and a polygon's edge).

• The item being drawn is not a TSLSymbol.

MapLink will attempt to ensure that opaque geometry is drawn before any transparent

geometry where possible, but does not provide any guarantees of the order that

transparent geometry will be drawn in by default. For situations where the consistently

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 145 AUM1107

 Commercial in Confidence

correct display of overlapping transparent objects is important and the transparent

geometry cannot be put in a separate render level, the drawing surface allows an

application to hint at the required level of correctness through the

TSLOpenGLTransparencyHintEnum enumeration.

This enumeration lets an application specify the following hints about how it uses

transparency on a per-data layer basis, ordered from fastest to slowest:

1. TSLOpenGLTransparencyHintNever - MapLink will attempt to draw opaque

geometry before transparent geometry where doing so will not cause a significant

performance impact. Opaque geometry may be drawn in any order. The

rendering order of transparent geometry is not guaranteed.

2. TSLOpenGLTransparencyHintFlushOpaque - Any pending opaque geometry not

yet rendered will be drawn when a transparent item is encountered. Opaque

geometry may be drawn in any order. Transparent items are drawn in order. The

performance impact of this setting depends on the number of transparent items

in the data layer.

3. TSLOpenGLTransparencyHintAlways - No draw reordering occurs - all items are

drawn in order from back to front. This setting has a substantial performance

impact that increases with the number of items drawn.

In almost all cases using TSLOpenGLTransparencyHintNever or

TSLOpenGLTransparencyHintFlushOpaque is sufficient to give acceptable output -

TSLOpenGLTransparencyHintAlways should only be used as a last resort due to its

performance impact.

Going back to the example at the beginning of this section, the same geometry drawn

using the TSLOpenGLTransparencyHintFlushOpaque hint will be rendered in the

expected order, giving this output:

For systems using OpenGL ES 2.0 or OpenGL 3.1 or earlier, entities using a patterned fill

or line style count as transparent for the purposes of draw ordering. On these systems

items that would be visible through the pattern will not be shown if they are drawn after

the patterned item. When using a system supporting OpenGL 3.2 or later MapLink uses

alpha testing for rendering these items and thus they count as opaque geometry for the

purposes of draw ordering unless the entity has also been set as transparent via its

rendering attributes.

13.9 Anti-aliasing

The OpenGL drawing surface can use two different types of anti-aliasing to reduce the

visibility of jagged edges on vector features. These are multisampling, which uses

features provided by the graphics hardware, and a post-processing implementation that

can be used when multisampling is not supported.

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 146 AUM1107

 Commercial in Confidence

13.9.1 Multisampling

Multisampling can be enabled when creating the drawing surface using one of the

constructors that internally create an OpenGL context using the numMultisampleSamples

option of the TSLOpenGLSurfaceCreationParameters class. The drawing surface will

attempt to locate a configuration supported by the graphics hardware that supports the

requested level of multisampling, but if none exists will use the highest level available on

the hardware. Higher levels provide better image quality at the cost of lower

performance, but modern hardware can generally run with 4x or higher multisampling

without trouble.

The specific levels of multisampling available depend on the graphics hardware in the

system.

The images shown on the next page illustrate the effect of increasing levels of

multisampling on image quality:

No multisampling

2x multisampling

4x multisampling

8x multisampling

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 147 AUM1107

 Commercial in Confidence

The decision on whether to use multisampling must be made at the time the drawing

surface is created - it cannot be enabled or disabled on an existing drawing surface.

On embedded and mobile systems using OpenGL ES 2.0 multisampling will not be

applied to any buffered or transparent layers (layers using the TSLPropertyBuffered or

TSLPropertyTransparency data layer properties). On systems that do not support

OpenGL 3.2 the ARB_texture_multisample extension is required.

13.9.2 Post-processing Anti-aliasing

When the graphics hardware supports multisampling there is little reason to use post-

processing anti-aliasing as multisampling provides better image quality, but if

multisampling is not supported then it can be better than no anti-aliasing.

Unlike multisampling, post-processing anti-aliasing can be enabled and disabled at

runtime via the TSLOpenGLSurface::setAntialiasingMode method as long as the

drawing surface was not created with multisampling enabled - multisamping and post-

processing anti-aliasing cannot be used at the same time.

Post-processing anti-aliasing has two available settings - FXAAStrong and FXAAWeak.

The strong setting will remove most jagged edges but will display noticeable visual

artefacts on single pixel thickness features. The weak setting will sometimes leave

noticeable jagged edges but does not generate artefacts around single pixel features as

the strong setting does.

The images below demonstrate the effect of these settings on image quality:

No post-process anti-aliasing

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 148 AUM1107

 Commercial in Confidence

Weak FXAA anti-aliasing

Strong FXAA anti-aliasing

When configuring feature rendering for maps and overlaps that is intended to be used

with the post-process anti-aliasing strong setting it is generally better to avoid using any

single pixel wide features entirely. Instead configure these features to be two pixels wide

and possibly use a slightly lighter colour if the feature may be in areas of high contrast

(e.g. black lines against pale backgrounds). The anti-aliasing effect softens the lines so

that the extra width is not as pronounced and often provides better quality than using

the weak setting with single pixel thick features due to the reduced aliasing.

13.10 Hardware-Supported Raster Formats

Modern graphics hardware supports a number of specialized raster formats (normally

referred to as ‘compressed textures’) that are highly efficient for drawing. These formats

are both faster to load and use less memory than other more traditional raster formats

such as JPEG and PNG as they do not need to be decompressed before drawing.

In order to allow applications to take advantage of these formats, the

TSLOpenGLDataOptimiser utility class provides means for an application to convert any

supported raster format into one of the special hardware-supported formats at runtime.

These converted rasters can then be loaded as normal into data layers such as the

TSLRasterDataLayer as with any other raster format.

When displaying very high resolution imagery it is advisable to first generate a raster

pyramid from the source raster as described in section 12.8.3 before converting the

raster using the TSLOpenGLDataOptimiser. Graphics hardware is limited in the

maximum resolution of raster that can be displayed (from 2048x2048 on mobile and

embedded devices up to 16384x16384 on recent desktop hardware), so creating raster

pyramids is necessary to display images that are larger than what is supported by the

hardware the application is running on.

Maps created by MapLink Studio that contain rasters can also take advantage of these

specialised raster formats when the map is used with the OpenGL drawing surface. This

can be done either at the time the map is created by MapLink Studio (refer to the

MapLink Studio User Guide for details), or for existing maps through the

TSLOpenGLDataOptimiser. At runtime MapLink will only attempt to load the image

format(s) that are supported by the hardware, so it is not necessary to prepare a version

of each map for each image format.

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 149 AUM1107

 Commercial in Confidence

13.11 Integrating with Other OpenGL Applications

It is sometimes desirable to use the OpenGL drawing surface in conjunction with user

interface toolkits or other libraries that perform their own OpenGL context creation and

management. For this situation each of the window system interface classes provides a

constructor that accepts an existing OpenGL context that the drawing surface should use

instead of creating its own.

When creating the drawing surface in this way an application usually wants to set the

swapBuffersManually option from the TSLOpenGLSurfaceCreationParameters used to

false as buffer swaps are usually managed by the same code that creates the OpenGL

context.

To prevent the drawing surface from clearing the colour buffer during a draw, set the

clear argument passed to TSLDrawingSurface::drawDU or TSLDrawingSurface::drawUU

to false. This option only inhibits clearing of the colour buffer - the depth buffer and

stencil buffer (if present) will still be cleared by the drawing surface.

When changing OpenGL state an application should normally use the drawing surface's

TSLOpenGLStateTracker object if it provides a function that maps to the state being

changed. The drawing surface internally tracks the current OpenGL state in order to

remove redundant state changes being sent to the driver which can affect performance;

thus it must be kept up to date with the actual OpenGL state in order to function

correctly. The initial values of the state tracker are read from OpenGL on drawing

surface creation. If the state of any settings that the state tracker stores are modified

outside of the state tracker the application should use the reset method to force it to re-

read the current OpenGL state.

13.11.1 Suggested Framebuffer Configurations

When the OpenGL drawing surface does not create an OpenGL context, it is up to the

application to ensure the framebuffer configuration used is suitable for use with the

drawing surface. The requirements for the drawing surface are as follows:

• An RGBA framebuffer (GLX_RENDER_TYPE is GLX_RGBA_BIT, WGL_PIXEL_TYPE_ARB

is WGL_TYPE_RGBA_ARB or EGL_COLOR_BUFFER_TYPE is EGL_RGB_BUFFER).

• A depth buffer of 16 bits or greater.

• On OpenGL ES 2.0 systems EGL_RENDERABLE_TYPE must be

EGL_OPENGL_ES2_BIT.

Any other settings may be freely chosen by the application.

The TSLGLXSurface and TSLNativeEGLSurface provide convenience utility methods,

named preferredVisualID and preferredConfigID, that can be used to identify the

framebuffer configuration that the drawing surface would prefer to use.

13.12 Off-screen Rendering

There are two main scenarios for wanting to make the OpenGL drawing surface render to

an off-screen surface:

1. To take a frame of output from a drawing surface that normally draws to a

window and save it for reuse, such as when rendering an overview of a map to a

texture.

2. To have a drawing surface that is not attached to a window and always draws off-

screen.

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 150 AUM1107

 Commercial in Confidence

Almost no graphics drivers allow for hardware acceleration when rendering to a bitmap

or pixmap, therefore the OpenGL drawing surface cannot be attached to one of these for

off-screen rendering. Instead, OpenGL itself must be used to accomplish this.

The process for the first type of off-screen rendering is consistent across the various

window system interface classes as it only uses standard OpenGL functionality -

framebuffer objects, generally referred to as FBOs.

The second type of off-screen rendering affects how the OpenGL context must be

created, and thus the specifics differ between Windows, X11 and EGL based systems.

13.12.1 Redirecting Drawing Surface Output to a Framebuffer Object

The OpenGL drawing surface respects any framebuffer object (FBO) bound at the point

that it starts drawing and will redirect its output to the buffers bound to this FBO.

Therefore making the drawing surface render to a texture or renderbuffer is as simple as

binding the desired FBO before calling drawDU or drawUU on the drawing surface. The

code to create this FBO would look as follows:

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 151 AUM1107

 Commercial in Confidence

// m_surface is a TSLOpenGLSurface that is attached to a window as

// normal for on-screen rendering.

// Creates the framebuffer object and attachments to use for offscreen

// rendering

bool createFBO()

{

 TSLDeviceUnits surfaceX1 = 0, surfaceY1 = 0,

 surfaceX2 = 0, surfaceY2 = 0;

 m_surface->getDUExtent(&surfaceX1, &surfaceY1,

 &surfaceX2, &surfaceY2);

 glGenFramebuffers(1, &m_fbo);

 glGenTextures(1, &m_texture);

 glGenRenderbuffers(1, &m_depthBuffer);

 // Initialise the colour texture and depth render buffer to

 // match the drawing surface's size

 m_surface->stateTracker()->bindTexture(GL_TEXTURE0, GL_TEXTURE_2D,

 m_texture);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, surfaceX2-surfaceX1,

 surfaceY2-surfaceY1, 0, GL_RGBA, GL_UNSIGNED_BYTE,

 NULL);

 glBindRenderbuffer(GL_RENDERBUFFER, m_depthBuffer);

 glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24,

 surfaceX2-surfaceX1, surfaceY2-surfaceY1);

 // Make the fbo the active render target

 m_surface->stateTracker()->bindFramebuffer(GL_FRAMEBUFFER, m_fbo);

 glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

 GL_TEXTURE_2D, m_texture, 0);

 glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

 GL_RENDERBUFFER, m_depthBuffer);

 // Make sure we created the fbo correctly

 GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);

 switch(status)

 {

 case GL_FRAMEBUFFER_COMPLETE:

 m_surface->stateTracker()->bindFramebuffer(GL_FRAMEBUFFER, 0);

 // Everything worked - we are done

 return true;

 default:

 // An error occurred - the created objects should be deleted here

 ...

 return false;

 }

}

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 152 AUM1107

 Commercial in Confidence

To make the drawing surface draw to the texture the applications draw function might

look as follows:

After the draw completes the texture will then contain the output from the drawing

surface.

13.12.2 Windowless Drawing Through GLX with the TSLGLXSurface

GLX allows an OpenGL context to be created from a GLXPbuffer instead of a Window

XID. These are created through glXCreatePbuffer which returns the GLXDrawable

needed to create the OpenGL context, which the drawing surface can then be attached

to. When using GLXPbuffers the application must create the OpenGL context itself. An

example of this is below:

// m_surface is a TSLOpenGLSurface that is attached to a window as

// normal for on-screen rendering.

//

// m_fbo is the framebuffer object already created

void draw(int width, int height, bool drawOffscreen)

{

 if(drawOffscreen)

 {

 m_surface->stateTracker()->bindFramebuffer(GL_FRAMEBUFFER, m_fbo);

 // Drawing will go to the buffers attached to the FBO - in this

 // case the texture created earlier.

 m_surface->drawDU(0, 0, width, height, true);

 }

 else

 {

 m_surface->stateTracker()->bindFramebuffer(GL_FRAMEBUFFER, 0);

 // Drawing will go to the window the surface is attached to

 m_surface->drawDU(0, 0, width, height, true);

 }

}

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 153 AUM1107

 Commercial in Confidence

int configAttribs[] = { GLX_DOUBLEBUFFER, False,

 GLX_DEPTH_SIZE, 16,

 GLX_DRAWABLE_TYPE, GLX_PBUFFER_BIT,

 GLX_RENDER_TYPE, GLX_RGBA_BIT,

 GLX_CONFIG_CAVEAT, GLX_NONE,

 None };

int numConfigMatches = 0;

GLXFBConfig *configs = glXChooseFBConfig(m_display, m_screenNum,

 configAttribs,

 &numConfigMatches);

if(!configs || numConfigMatches == 0)

{

 // Error - no valid framebuffer configurations

 ...

}

int bufferAttribs[] = { GLX_PBUFFER_WIDTH, width,

 GLX_PBUFFER_HEIGHT, height,

 None };

GLXPbuffer glxDrawable = glXCreatePbuffer(m_display, configs[0],

 bufferAttribs);

// This code assumes support for GLX_ARB_create_context

int contextAttribs[] = { GLX_CONTEXT_MAJOR_VERSION_ARB, 3,

 GLX_CONTEXT_MINOR_VERSION_ARB, 2,

 GLX_CONTEXT_PROFILE_MASK_ARB,

 GLX_CONTEXT_CORE_PROFILE_BIT_ARB

 GLX_RENDER_TYPE, GLX_RGBA_TYPE,

 None };

GLXContext context = glXCreateContextAttribs(m_display, configs[0], None,

 True, contextAttribs);

if(!glXMakeContextCurrent(m_display, glxDrawable, glxDrawable,

 context))

{

 // Error - cannot activate context

 ...

}

// Attach the drawing surface to the OpenGL context

TSLOpenGLSurfaceCreationParameters creationOptions;

creationOptions.useVSync(false);

creationOptions.swapBuffersManually(true);

TSLGLXSurface *surface = new TSLGLXSurface(m_display, m_screen,

 glxDrawable, context,

 creationOptions);

XFree(configs);

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 154 AUM1107

 Commercial in Confidence

13.12.3 Windowless Drawing Through EGL with the TSLEGLSurface

Windowless rendering with EGL is very similar to GLX - an OpenGL context can be

created from an EGLSurface tied to a Pbuffer instead of an EGLNativeWindowType. When

using EGL Pbuffers the application must create the OpenGL context itself. An example of

this is below:

13.12.4 Windowless Drawing on Windows with the TSLWGLSurface

Windowless drawing on Windows is not possible - while WGL has the same pbuffer

concept as GLX and WGL through the WGL_ARB_pbuffer OpenGL extension, because it is

an OpenGL extension the functions necessary to use it require an active OpenGL context

- thus giving a circular dependency of requiring an OpenGL context in order to create an

OpenGL context.

The standard method of dealing with this situation is to create an invisible window to

create the OpenGL context from, and use the FBO method described in section 13.12.1.

Applications should not render to the invisible window as this is undefined behaviour in

OpenGL and so may not work on all graphics hardware.

EGLint configAttribs[] = { EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,

 EGL_COLOR_BUFFER_TYPE, EGL_RGB_BUFFER,,

 EGL_SURFACE_TYPE, EGL_PBUFFER_BIT,

 EGL_DEPTH_SIZE, 16,

 EGL_SAMPLES, 0,

 EGL_NONE };

EGLint numConfigMatches = 0;

EGLConfig config;

if(!eglChooseConfig(m_display, configAttribs, &config, 1,

 &numConfigMatches) || numConfigMatches == 0)

{

 // Error - no valid framebuffer configurations

 ...

}

EGLint bufferAttribs[] = { EGL_WIDTH, width,

 EGL_HEIGHT, height,

 EGL_NONE };

EGLsurface eglSurface = eglCreatePbufferSurface(m_display, config

 bufferAttribs);

EGLint contextAttribs[] = { EGL_CONTEXT_CLIENT_VERSION, 2,

 EGL_NONE };

EGLContext context = eglCreateContext (m_display, config, EGL_NO_CONTEXT,

 contextAttribs);

if(!eglMakeCurrent(m_display, eglSurface, eglSurface, context))

{

 // Error - cannot activate context

 ...

}

// Attach the drawing surface to the OpenGL context

TSLEGLSurface *surface = new TSLEGLSurface();

surface->attach();

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 155 AUM1107

 Commercial in Confidence

13.13 Threading

An OpenGL context can only be active in one thread at a time, and each thread can only

have one context active. This means that drawing can only occur in the thread

associated with its context and attempting to call any functions that result in drawing in

another thread will result in errors being generated and no drawing occurring.

The thread the drawing surface's context is bound to can be changed by calling the

makeContextCurrent function available on each of the window system interface classes

from the new thread, however this is an expensive operation so applications should

avoid frequently migrating a drawing surface between threads.

Drawing data layers and entities in the OpenGL drawing surface creates GPU resources

than MapLink associates with the item being drawn. These resources must be freed in

the same thread as the OpenGL context that they were created from in order to avoid

resource leaks. This can be done either by deleting the object in this thread or using the

releaseResources method on the TSLDataLayer or TSLEntity.

A multithreaded application should generally assign one rendering thread to each

OpenGL context (and thus drawing surface) used, with other application logic occurring

other threads. Guidelines on using MapLink in a threaded environment can be found in

section 30.

13.14 Performance Tips

There are several important considerations when writing an application using the

OpenGL drawing surface in order to achieve maximum performance. This section

contains suggestions on how to approach various tasks in the most performant way with

the OpenGL drawing surface and lists some common pitfalls to avoid.

13.14.1 General Tips

The first time an item is drawn the OpenGL drawing surface will perform a set of

processing tasks necessary in order to create the necessary GPU resources to draw the

item. The results of this processing are associated with the item so that they can be

reused in subsequent draws. For complex items this calculation can take a noticeable

amount of time and so an application should try and avoid situations that cause this

calculation to be redone unnecessarily. The situations that can trigger this recalculation

are as follows:

Removing a TSLDataLayer from the drawing surface will delete any associated GPU

resources. Re-adding the data layer to the surface will trigger the processing task for the

data layer on the next draw. Applications should avoid removing and re-adding data

layers to the surface as a method of controlling layer visibility - the TSLPropertyVisible

data layer property should be used for this task.

Calling notifyChanged on a TSLDataLayer indicates to the drawing surface that the any

existing resources need to be recreated due to the underlying data of the data layer

changing in a way it cannot detect. In most cases the drawing surface can identify when

the data layer has been modified in a way that requires recalculation (such as loading a

new map into a TSLMapDataLayer or modifying the contents of a TSLEntitySet), so

applications should only call notifyChanged in situations where this will not occur

automatically.

Modifying a TSLEntity by changing its coordinates, or in the case of a TSLEntitySet

adding/removing entities from the set invalidates the GPU resources for all entities in the

controlling data layer or entity set. The OpenGL drawing surface offers per-data layer

controls for applications to provide hints on how GPU resources should be created for

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 156 AUM1107

 Commercial in Confidence

TSLEntities in order to minimise the amount of recalculations that occur - see section

13.14.2 for details.

Each transparent data layer in a draw uses an additional amount of graphics memory

equal to that used by the default framebuffer of the drawing surface. Applications should

avoid large numbers of transparent layers on graphics hardware with low amounts of

memory.

Applications should use the drawing surface's TSLOpenGLStateTracker to modify the

OpenGL state where possible instead of using its reset method to force it to re-read the

OpenGL state. Re-reading the OpenGL state will normally cause the thread containing

the OpenGL context to block until all pending OpenGL commands are complete which

can cause stalls during application rendering.

Data layers shared between multiple OpenGL drawing surfaces do not share GPU

resources even if their OpenGL contexts share resource lists. Therefore, a data layer in

two OpenGL drawing surfaces requires twice as much graphics memory as the same

data layer in one drawing surface.

Increasing the cache size of a TSLDataLayer will increase the amount of GPU memory

used accordingly. Applications should try to avoid setting large cache sizes on systems

that have low amounts of GPU memory.

Other documentation may refer to performance differences between cosmetic and

geometric pens when drawing lines. The OpenGL drawing surface has no distinction

between these types and therefore there is no performance difference between then.

13.14.2 Vector Geometry in Data Layers

By default, data layers containing vector geometry (i.e. TSLEntities) have one

combined GPU resource created for all entities within a single tile of that layer, or one

resource for that layer for layers that are not tiled.

When using layers providing user-editable TSLEntities, such as the

TSLStandardDataLayer this can be problematic since changing any single TSLEntity

requires reprocessing the entire tile or entity set. For this situation the OpenGL drawing

surface allows an application to provide a hint about how it should structure GPU

resources to avoid unnecessary recalculation through the

TSLOpenGLStorageStrategyEnum enum and setLayerStorageStrategy method on

TSLOpenGLDrawingSurface. This allows an application to structure its data into a series

of self-contained resource groups that are modified together.

The diagrams below show a simple entity hierarchy using each of the storage strategies.

The background colour of each item denotes the resource group it belongs to, with items

having the same background colour being in the same group.

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 157 AUM1107

 Commercial in Confidence

Figure 22 - Per Tile Storage Strategy

Figure 23 - Per Entity Set Storage Strategy

Data Layer

TSLEntitySet

TSLPolygon TSLPolygon TSLEntitySet

TSLPolygon TSLPolygon

Data Layer

TSLEntitySet

TSLPolygon TSLPolygon TSLEntitySet

TSLPolygon TSLPolygon

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 158 AUM1107

 Commercial in Confidence

Figure 24 - Per Entity Storage Strategy

If an application had two types of vector geometry in a TSLStandardDataLayer, one that

was rarely modified and one that was frequently modified, these could be stored in two

different TSLEntitySets on the TSLStandardDataLayer, with the layer's storage

strategy set to TSLOpenGLPerEntitySetStrategy. This way, modifying the contents of

one entity set would not invalidate the GPU resources of the other entity set leading to

improved performance.

Applications should avoid creating many small resource groups in this fashion as each

additional group requires additional OpenGL state changes to draw and reduces the

ability for the drawing surface to reorder drawing for best performance. For the same

reason an application should avoid using the TSLOpenGLPerEntityStrategy unless

absolutely necessary.

Using the move, rotate, rotation, scale, scaleXY and translate methods on

TSLEntity, or modifying the rendering attributes of the TSLEntity does not trigger the

invalidation of GPU resources for the resource group.

13.14.3 Using the TSLRenderingInterface

Applications should avoid using drawPolygon and drawPolyline on the

TSLRenderingInterface in conjunction with the OpenGL drawing surface. These

methods require the drawing surface to create and delete the necessary resources to

draw the geometry every time the method is called, which leads to increasingly poor

performance the more these methods are called in a frame.

Instead, an application should set the layer storage strategy on the drawing surface for

the data layer to TSLOpenGLPerEntitySetStrategy and create a persistent

TSLEntitySet that contains TSLPolygons and TSLPolylines for each of the items that

need to be drawn. The application should draw these items by passing the containing

Data Layer

TSLEntitySet

TSLPolygon TSLPolygon TSLEntitySet

TSLPolygon TSLPolygon

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 159 AUM1107

 Commercial in Confidence

TSLEntitySet to the drawEntity function on the TSLRenderingInterface. This allows

the drawing surface to avoid having to perform the same set of calculations every frame

for this geometry.

For the same reasons an application should not recreate any TSLEntities that will be

used for drawing each frame - these should be persisted between frames where possible.

Any entities used with the TSLRenderingInterface in this fashion must have the

releaseResources method called from the application's drawing thread before the

drawing surface is destroyed or detached.

13.14.4 Dynamic Renderers

Dynamic renderers used with the OpenGL drawing surface should avoid calling

drawPolygon and drawPolyline on the TSLRenderingInterface as described in section

13.14.3. When using a dynamic renderer to draw an entity with custom rendering

attributes the renderer should always return

TSLDynamicRendererActionUseCurrentRendering from the render method and allow

MapLink to draw the entity. Dynamic renderers implemented this way will perform

substantially faster when used with the OpenGL drawing surface.

13.14.5 Raster Data in Data Layers

Raster drawing is normally fast in all circumstances and there is little an application

needs to do to ensure good performance. Some general information is presented below:

Palletized rasters are slower to draw than RGB rasters. An application should not convert

RGB images to palletized images on the expectation of increased drawing performance.

Rasters must be decompressed in order to be drawn. This can consume a substantial

amount of GPU memory if many rasters are used at the same time. The application can

use the cache size setting of the data layer to control the amount of memory used by the

data layer.

• Excessive minification of rasters (drawing a raster at a significantly lower

resolution than the image itself) can be slow on some hardware, especially when

the raster approaches the maximum supported resolution of the hardware.

Applications can generate raster pyramids in these cases using

TSLRasterUtilityFunctions::rasterToPyramid for runtime loaded rasters, or

enabling raster pyramiding in MapLink Studio when generating raster maps.

• Mobile and embedded devices usually have very limited fill rates, meaning each

pixel on the screen cannot be updated may times before drawing performance

slows down. On these devices an application should avoid layering multiple

rasters on top of each other when the underlying rasters are not visible.

For best performance applications should make use of the compressed texture format

support described in section 13.10 when possible, particularly on mobile or embedded

platforms when GPU memory is limited.

13.14.6 Map Creation Guidelines

The OpenGL drawing surface, especially on mobile or embedded devices, is more

susceptible to performance problems from poorly constructed maps. In particular, users

should read the 'Optimising Maps for Performance' section from the MapLink Studio user

guide before creating their map.

Vector maps intended for use with the TSLStaticMapDataLayer (see section 13.6)

should be created with the vector processing option enabled as described in the ‘Platform

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 160 AUM1107

 Commercial in Confidence

Specific Tips – Embedded, Mobile and OpenGL’ section of the MapLink Studio user guide.

Doing so removes the need for the data layer to perform the same processing when

loading new data for display which substantially improves application responsiveness

when zooming and panning the map.

Raster maps should generally always be created with one or more of the compressed

raster options enabled as described in the ‘Platform Specific Tips – Embedded, Mobile

and OpenGL’ section of the MapLink Studio user guide. The specific formats to use

depends on the capabilities of the target hardware that will be used to display the map.

When assessing the complexity of a vector map it can be useful to put the drawing

surface into wireframe mode. This can provide a quick visual method of determining if a

particular map layer is unnecessarily detailed for the scale it is displayed at. This can be

done by inserting the following line of code before calling drawDU:

 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

As a general rule, areas that appear as mostly solid colour in wireframe mode when

viewing a detail layer at its highest zoom level are unnecessarily detailed and could be

simplified without affecting the appearance of the detail layer.

When creating maps for mobile or embedded devices it can often be more efficient to

use the background colour setting in MapLink Studio to colour large areas of ocean or

land instead of using a background rectangle if the actual features are not required at

runtime. This can significantly improve performance on some devices that have limited

fill rates.

13.15 Behavioural Differences to Other Drawing Surfaces

In most cases the MapLink 2D drawing surfaces can be treated interchangeably, once

created most interactions occur through the TSLDrawingSurface and

TSLDrawingSurfaceBase classes which provide consistent behaviour regardless of the

specific surface type.

While this is generally true for the OpenGL surface as well, the underlying technology it

uses operates substantially differently to the other MapLink drawing surfaces and so

there are inevitably some areas where it will behave differently to the TSLNTSurface or

TSLMotifSurface. This section is intended to provide a summary of these differences to

developers already familiar with the behaviour of the TSLNTSurface or TSLMotifSurface

- all the information below is also listed in the API documentation for the appropriate

classes/functions.

The origin for TSLDrawingSurface::wndResize is bottom left rather than top left. Note

that all other functions that take TSLDeviceUnits still operate with a top-left origin (e.g.

TSLDrawingSurface::drawDU). When sizing the drawing surface to cover the entire

window it is attached to this difference has no practical effect - the arguments passed

are the same. Using wndResize to restrict the drawing surface to part of a window is

discouraged.

The updateExtentOnly flag on TSLDrawingSurface::drawDU and

TSLDrawingSurface::drawUU causes any drawing, including the clear operation if clear

is set to true, to be hard clipped to the given region in the OpenGL surface. With the

TSLNTSurface and TSLMotifSurface drawing can still occur outside the designated

region.

Drawing can only occur in the thread that the OpenGL context is bound to - by default

this is the thread the drawing surface is created in. See section 13.13 for more details.

The drawing surface cannot be attached to a bitmap or pixmap for off-screen rendering

unless this is explicitly supported by the graphics driver - most drivers do not support

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 161 AUM1107

 Commercial in Confidence

this. See section 13.12 for details on how to perform off-screen rendering with the

OpenGL drawing surface.

The drawing surface frame that can be activated via TSLDrawingSurface::setFrame is

not supported.

ROP fillstyles (style IDs 600-614) are not supported.

The TSLOptionDoubleBuffered drawing surface option has no effect on the drawing

surface. Double buffering is determined during OpenGL context creation and cannot be

changed afterwards.

The TSLOptionAntiAliasMonoRasters drawing surface option has no effect on the

drawing surface. Anti-aliasing is determined during OpenGL context creation and cannot

be changed afterwards. Any anti-aliasing applies to all rendering performed via the

drawing surface. See section 13.9 for more details.

MapLink OS-specific types are undefined for the OpenGL drawing surface, e.g.

TSLDeviceContext, TSLWindowHandle. Functions which accept these types cannot be

used in conjunction with the OpenGL drawing surface. Equivalent functions are provided

on the window system interface classes where appropriate.

The OpenGL drawing surface cannot be cloned. The clone method will always return

NULL.

Hershey vector fonts as described in section 12.6.5 are not supported as they would be

substantially slower than the normal font rendering.

Text is always rendered with anti-aliasing enabled as there is no performance overhead

in doing so.

OpenGL 3.2 is required for mitre and bevel line joins. When this is not available any lines

using these join types will be drawn with rounded joins instead.

13.16 Migrating from Other Drawing Surfaces

Updating an existing application using one of the other MapLink drawing surfaces to use

the OpenGL drawing surface is quite simple. This involves replacing the drawing surface

class used by the application with the applicable window system interface class for the

target platform (i.e. TSLNTSurface is replaced with TSLWGLSurface, and

TSLMotifSurface is replaced with TSLGLXSurface). As the OpenGL drawing surface

implements the same interface as the other MapLink drawing surfaces this should not

affect the majority of the application's code if the drawing surface is referenced as a

TSLDrawingSurface in the sections of the application that do not deal with the

windowing system.

On X11 systems the visual used to create the window that the drawing surface is

attached to determines the properties of the framebuffer used by the drawing surface

(such as the presence of double buffering), therefore it is important to use a visual

suitable for the drawing surface. The TSLGLXSurface provides a helper method called

preferredVisualID to assist the application is selecting a suitable visual.

In practice, this means that an application's original drawing surface creation that looks

like this:

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 162 AUM1107

 Commercial in Confidence

Would be replaced with the following:

 // On Windows

 TSLNTSurface *surface = new TSLNTSurface(m_hWnd, false);

 surface->setOption(TSLOptionDoubleBuffered, true);

 surface->wndResize(0, 0, width, height, false);

 ... // Non-drawing surface application initialisation

 // On X11

 // Find the visual to use when creating the window

 Visual *visual = applicationVisualChooser();

 // Creates the X window using the chosen visual

 Window window = createWindow(visual);

 TSLMotifSurface *surface = new TSLMotifSurface(display, screen,

 colourmap, window, 0,

 visual);

 surface->setOption(TSLOptionDoubleBuffered, true);

 surface->wndResize(0, 0, width, height, false);

 ... // Non-drawing surface application initialisation

 // On Windows

 TSLOpenGLSurfaceCreationParameters creationOptions;

 TSLWGLSurface *surface = new TSLWGLSurface(m_hWnd, false,

 creationOptions);

 m_drawingSurface->wndResize(0, 0, width, height);

 ... // Non-drawing surface application initialisation

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 163 AUM1107

 Commercial in Confidence

13.16.1 Interaction Modes

Previously MapLink provided two interaction mode manager classes, one for use on

Windows that uses GDI to render feedback information and one for use on X11 systems

that uses Xlib to render feedback information.

Using these interaction mode managers in conjunction with the OpenGL drawing surface

can be problematic as this requires the graphics driver of the system to allow mixed

OpenGL and GDI/Xlib rendering to the same window and not all implementations provide

this capability.

To solve this issue a new interaction mode manager,

TSLInteractionModeManagerGeneric, and its associated display class are provided that

use the underlying drawing technology of the drawing surface it is created with. This

manager can be used with any of the MapLink drawing surfaces.

13.16.2 Applications Containing Custom GDI or Xlib Rendering

Applications that contain custom drawing code, e.g. in a custom data layer or Dynamic

Data Objects, using GDI on Windows or Xlib on X11 systems will require additional

changes in order to use the OpenGL drawing surface. Even on systems where mixing

OpenGL and GDI/Xlib rendering is supported, any drawing that the application performs

in this fashion will go directly to the framebuffer's front buffer, not the back buffer that

the drawing surface is drawing to. This means that once a buffer swap occurs at the end

of a draw this rendering will be overwritten by the contents of the back buffer and will

not be seen by the user.

In order to assist applications with migrating to using the OpenGL drawing surface

MapLink provides a concept called non-native rendering (sometimes also referred to as

non-native drawing). Effectively this allows an application to use a drawing technology,

 // On X11

 // Find the visual to use when creating the window

 TSLOpenGLSurfaceCreationParameters creationOptions;

 int visualID = TSLGLXSurface::preferredVisualID(display, screen,

 creationOptions);

 XVisualInfo visualTemplate;

 visualTemplate.screen = screenNum;

 visualTemplate.visualid = visualID;

 int numVisualMatches = 0;

 XVisualInfo *visualData = XGetVisualInfo(display, VisualIDMask |

 VisualScreenMask,

 &visualTemplate,

 &numVisualMatches);

 // Creates the X window using the chosen visual

 Window window = createWindow(visualData->visual);

 TSLGLXSurface *surface = new TSLGLXSurface(display, screen, window,

 visualData->visual,

 creationOptions);

 m_drawingSurface->wndResize(0, 0, width, height);

 XFree(visualData);

 ... // Non-drawing surface application initialisation

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 164 AUM1107

 Commercial in Confidence

generally GDI or Xlib, in custom layers different to the one used by the drawing surface

without the problems mentioned above.

To use non-native rendering, an application should set the

TSLPropertyNonNativeDrawing data layer property for each layer that does not draw

using OpenGL. It should be noted that a single layer should not try to mix both OpenGL

and non-native drawing as the results will not be as expected - for this reason the draw

methods on the TSLRenderingInterface will be disabled during the drawing of a non-

native data layer.

Applications should note that the drawing surface provided non-native drawing target

will always be cleared each time it is drawn, regardless of the value of the clear flag

passed to the drawing surface's drawDU method. This is because in some

implementations the target is reused between multiple non-native layers and thus not

clearing the contents would lead to unexpected output.

Users of this functionality should be aware that there is a significant performance

overhead associated with merging the output of different drawing technologies. This

capability is provided to allow for reuse of existing code and should not be used as a

basis for development of significant amounts of new non-native drawing code. An

application that was performance limited by the speed of non-native custom drawing

with one of the other MapLink drawing surfaces will usually run slightly slower using the

OpenGL drawing surface due to the extra synchronisation necessary.

It is recommended for best performance that the application’s custom rendering is

rewritten in OpenGL where possible.

13.16.2.1 Non-Native Layers on Windows

When drawing a non-native layer on Windows, the drawing surface creates a memory

bitmap for the application to draw to. For the duration of the layer's draw method the

handleToDrawable method of the TSLRenderingInterface will return an HDC with this

bitmap already selected into, which the application can draw directly into using GDI or

similar. This is almost identical to how the TSLNTSurface behaves, with the exception

that the HDC returned is never the same as the one the drawing surface was attached

to.

By default the drawing surface assumes that the application will use GDI to draw to the

bitmap. As GDI does not support alpha as a colour component, the drawing surface

assumes that any pixels drawn to as part of the layer's drawing will have the alpha

component set to 0. When merging the non-native drawing onto the framebuffer, pixels

whose alpha value are 255 will not be displayed, while pixels whose alpha value is 0 will

be shown.

If the application uses drawing methods that properly support alpha, such as those from

GDI+, the default setting will result incorrect rendering. In this case the

enableNonNativeGDIAlphaCorrection method on TSLWGLSurface should be used to

disable the automatic inversion of the alpha channel of the bitmap.

13.16.2.2 Non-Native Layers on X11

The use of non-native layers on X11 systems requires support for the

GLX_EXT_texture_from_pixmap OpenGL extension and the Xrender X11 extension.

When drawing a non-native layer on X11 systems, the drawing surface creates a pixmap

for each non-native layer in the drawing surface. For the duration of the layer's draw

method the handleToDrawable and handleToX11DrawingParameters methods of the

TSLRenderingInterface will return the drawable and visual that the application should

Commercial in Confidence

 OpenGL Drawing Surface

© 2021 Envitia Ltd 165 AUM1107

 Commercial in Confidence

draw into. The drawable will always be a 32bit pixmap. It should be noted that the visual

returned may be different from the one used when creating the drawing surface,

especially if multisampling is in use.

Application drawing to the pixmap should correctly set the alpha channel in order for the

results to be visible. If using the base Xlib drawing functions that do not directly allow

the specification of the alpha component, this can be done through direct manipulation

of the pixel value on True Colour visuals like so:

 XVisualInfo visualTemplate;

 visualTemplate.visualid = XVisualIDFromVisual(visual);

 int numMatches = 0;

 XVisualInfo *visualInfo = XGetVisualInfo(display, VisualIDMask,

 &visualTemplate, &numMatches);

 unsigned long alphaBytes = std::numeric_limits<unsigned long>::max();

 alphaBytes ^= (visualInfo->red_mask | visualInfo->green_mask |

 visualInfo->blue_mask);

 XFree(visualInfo);

 // Determine normal pixel value as normal through either XAllocColor

 // or calculation based on the visual's colour masks

 XColor colour = ...

 unsigned long alphaColour = alphaBytes | colour.pixel;

Commercial in Confidence

 Direct Import SDK

© 2021 Envitia Ltd 166 AUM1107

 Commercial in Confidence

14 Direct Import SDK

The Direct Import SDK allows an application to load a wide variety of data formats at

runtime in a scalable and performant manner.

The TSLDirectImportDataLayer can load both vector and raster data, including mixed

raster/vector from a single file. The layer provides the ability to reproject data to the

specified output coordinate system along with various vector and raster processing

options.

Many of the options and concepts used by the Direct Import Layer are similar to those in

MapLink Studio.

This includes the ability to export a feature rendering configuration from MapLink Studio

in order to style vector data within the Direct Import Layer.

14.1 Library Usage and Configuration

As with the MapLink Core SDK, the Direct Import SDK comes in 2 different

configurations. It should be noted that the library to be linked with should be determined

by the Core SDK library that you are using within your application. For example, if you

are using the Release mode, DLL version of the Core SDK (MapLink.lib) then you must

use the equivalent Direct Import SDK library (MapLinkDirectImport.lib or

MapLinkDirectImport64.lib).

MapLinkDirectImport.lib or
MapLinkDirectImport64.lib
Release mode, DLL version.
Uses Multithreaded DLL C++ run-time library.

Must also link the MapLink CoreSDK library
MapLink.lib/MapLink64.lib

Requires TTLDLL preprocessor directive.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing. Where X.Y is the version of
MapLink you are deploying.

MapLinkDirectImportd.lib or
MapLinkDirectImport64d.lib
Debug mode, DLL version.
Uses Debug Multithreaded DLL C++ run-time
library.

Must also link the MapLink CoreSDK library
MapLinkd.lib/MapLink64d.lib

Requires TTLDLL preprocessor directive.

No redistributable run-time available.

KEYED : Development machines only.

14.2 Supported Data Formats

The TSLDirectImportDataLayer does not impose any restrictions on file formats.

Instead these are determined by the available implementations of

TSLDirectImportDriver.

Each TSLDirectImportDriver may support a range of configuration options. These

options may be set globally via the configuration files under the MapLink config

directory/directimport.

Current formats supported are listed in Appendix B.

14.3 Data Layout and Scale Bands

The TSLDirectImportDataLayer may load a mixture of raster and vector data, which

may be displayed in any order.

Commercial in Confidence

 Direct Import SDK

© 2021 Envitia Ltd 167 AUM1107

 Commercial in Confidence

One data path (A file path, web service URL or other data identifier) may correspond to

multiple instances of TSLDirectImportDataSet, with each data set corresponding to a

sub-layer within the data. Simple formats such as shapefiles will only contain a single

dataset, which will correspond to the vector feature within the data. These data sets are

handled independently of each other, and as such may be loaded on a selective basis.

Data sets may also be loaded with different per-dataset settings such as feature

rendering, and raster adjustments.

In order to load a data set the application must call addScaleBand at least once. Each

scale band within the data layer functions in a similar way to detail layers in a map, or

layers within a MapLink Studio project.

Only one scale band will be displayed by the data layer at a time.

The selection of scale bands is based upon a calculated display scale, such as 1:100,000.

In order for this to be accurate the application should set the parameters of the display

via TSLDrawingSurfaceBase::setDeviceCapabilities. On some platforms these

capabilities may be set automatically by the drawing surface.

A data set may be loaded into multiple scale bands. This may be used to display data as

a background for all display scales. For raster data overview datasets may be loaded if

present in the original data. These are reduced resolution versions of the data set

suitable for loading into overview layers.

Data loaded into a scale band will be split into tiles for processing/display. These tiling

levels may either be set by the application or calculated automatically. The automatic

tiling calculation is based upon the minimum display scale of the band and will create

more tiles for more detailed scales. Applications must ensure that data is loaded at an

appropriate scale in order to maintain performance.

14.4 Data Processing and Display

When a data set is loaded into the layer it will be split into several tiles (based on the

scale band configuration) and processed asynchronously. Once a tile has been processed

it will be stored in the on-disk cache and displayed. If the data needs to be reloaded

after this point it will be loaded from the on-disk cache.

Data will be scheduled for loading based on the current view extent, and the

extentExpansion setting of the layer. The application may also request that a specific

extent be processed, by calling preprocessData.

Complex vector data, or large amounts of raster data may take a long time to process. It

is advisable to call preprocessData for these datasets prior to the point they need to be

displayed in order to pre-process the data into the on-disk cache.

14.5 Callbacks

The TSLDirectImportDataLayer is fully asynchronous and will rarely block the calling

thread for any significant amount of time.

In order to achieve this the following callback classes are provided:

TSLDirectImportDataLayerCallbacks - The application should always provide an

implementation of this class. It provides the application with feedback on data

processing, and is used to request that the application redraws the drawing surface.

TSLDirectImportDataLayerAnalysisCallbacks - The application should provide an

implementation of this class when performing data analysis operations. An

implementation of this class is not required when loading data for display.

Commercial in Confidence

 Direct Import SDK

© 2021 Envitia Ltd 168 AUM1107

 Commercial in Confidence

14.6 Vector specific settings and styling

Other than styling/feature rendering information vector specific settings are provided via

TSLDirectImportVectorSettings.

Styling information for vector data is provided as a TSLFeatureClassConfig. This

information may be set on a per data set basis and may include rendering specific to

each scale band. A feature configuration may be created through the MapLink API, or by

exporting a MapLink Studio feature book as an MLD File.

The TSLFeatureClassConfig and associated classes provide many of the concepts used

by MapLink Studio, including:

• A hierarchical list of features

• Different configuration for features based on product specification/detail

level. When used in the Direct Import SDK product specifications must be

set on the dataset prior to loading via

TSLDirectImportDataSet::product.

• Feature masking

• Automatic feature classification, for example with either a single feature

per attribute value or classification based on a range of values

• Multiple levels of feature classification

• Text label generation based on attribute values

• Data Analysis

The direct import layer provides functionality to analyse a dataset and produce an initial

TSLFeatureClassConfig. This will populate the feature configuration with a list of

features found in the data.

If present in the data, and supported by the direct import driver, the feature

configuration may include feature classification, masking and rendering information.

This analysis can often take a long time as it requires iterating over all the source data.

This should be performed as an offline process, in order to produce a feature

configuration for the data or product. Alternatively, the feature configuration may be

exported from the MapLink Studio feature book.

14.7 Raster specific settings

Any raster specific settings for a data set are provided via

TSLDirectImportRasterSettings.

14.8 Caching

14.8.1 In Memory Cache

The in-memory cache will store processed and displayed data in memory. Data will be

prioritised based on the most recently drawn area of the world and will automatically be

swapped to the on-disk cache when required. The cache size will directly affect the

display of vector data, and processing of both vector and raster data. If the in-memory

cache size is too small, it may trigger a high amount of disk IO when panning the map

display.

Commercial in Confidence

 Direct Import SDK

© 2021 Envitia Ltd 169 AUM1107

 Commercial in Confidence

14.8.2 On Disk Cache

The on-disk cache will store processed data on disk, along with the parameters used to

create the data. Like the in-memory cache data will be prioritised based on the most

recently drawn area of the world. This cache may be left on disk once the data layer is

destroyed and re-used in a future run of the application. Any data which is loaded with

the same settings as before will be loaded from disk, instead of being processed from

the source data. The cache size will affect the amount of disk space used by the layer. If

the on-disk cache size is too small it will cause the data to be processed from source,

which may delay the appearance of data on the display.

14.8.3 Raster Draw Cache

The raster draw cache is used to cache raster data when drawing. The cache size will

affect the amount of raster data which can be displayed at a time. If the raster draw

cache size is too small raster data may not be drawn and will greatly reduce

performance of the map display.

14.9 Optimising Raster Data for Direct Import

One of the standard Direct Import Drivers for MapLink Pro uses GDAL/OGR to load the

data. This allows a user to take advantage of gdal command line utilities to optimise the

data for use in the runtime environment.

14.9.1 Creating Overview Layers

A common way to allow an application to load raster images with high performance is to

produce reduced resolution versions of data that are used when the display is at an

appropriate scale. Some formats can have these overview layers inherently within for

the format specification, others do not support it or leave it as optional. MapLink Studio

does this automatically by default for processed maps.

GDAL/OGR provides the ‘gdaladdo’ command line utility which allows you to create

overview layers which sit alongside a raster image but are automatically picked up when

the raster is loaded in the Direct Import SDK. Note that GDAL does not support

interpolation of 8-bit palette images, so producing overviews for this kind of data may

improve performance but reduce the quality.

14.9.2 Combining Raster Mosaics

One common scenario is for a related set of raster images to be supplied as individual

tiles. This can be cumbersome to manage in an application. GDAL/OGR has the concept

of a ‘Virtual Raster’, which is made up of a group of rasters but behaves to the

application to like a single image. The command line utility to produce this is

‘gdalbuildvrt’. The options to this utility are flexible and can also be used in tandem

with other utilities. The following sequence allows a mosaic of terrain files to be loaded.

Create a list of files that make up the mosaic. On Windows, from a folder containing

subfolders with DTED .dt0 files, this might be:

“dir /b /s /a-d > files.txt”

Combine those into a single file that can be loaded into the Direct Import Data Layer:

“gdalbuildvrt –input_file_list files.txt dted.vrt”

Style the DTED files using a colour relief:

Commercial in Confidence

 Direct Import SDK

© 2021 Envitia Ltd 170 AUM1107

 Commercial in Confidence

“gdaldem –color-relief –of VRT dted.vrt

<MAPLINK_HOME>\config\colourramps\elevationCombined.ctr styled_dted.vrt”

The ‘styled_dted.vrt’ should be loaded into the Direct Import Data Layer as a single

styled raster, producing an image such as:

14.10 Direct Import Drivers

Direct Import ‘drivers’ provide support for each data format via a plugin architecture.

When created the TSLDirectImportDataLayer will load all available drivers.

These libraries must be located at <Location of MapLinkDirectImport

DLL>/plugins/directimport/. In a MapLink installation this corresponds to <MapLink
Bin Directory>/plugins/directimport/.

As with other MapLink libraries there are multiple configurations of each driver. Only one

of these configurations will be loaded at runtime based on the configuration of the

MapLink Direct Import DLL.

Commercial in Confidence

 Tracks SDK

© 2021 Envitia Ltd 171 AUM1107

 Commercial in Confidence

15 Tracks SDK

The TrackDisplayManager provides an easy way to create and display dynamic objects

representing real-world entities that frequently change position. Tracks can be styled

using application-defined symbols, or the APP6A and 2525B military symbology

standards.

Each real-world entity is represented in the application by an instance of the Track class,

which contains information about the entity such as its position, speed and velocity. Each

track uses one or more symbol derived classes to define the appearance of the track at

various zoom levels, as well as the appearance of the track's selection indicator (to

visually identify when a track will be used for application-defined operations) and the

appearance of the track's history trail.

Tracks are associated with a drawing surface using the TrackDisplayManager class. The

TrackDisplayManager acts as a container for a group of tracks within the application, and

provides methods for efficiently updating common properties on large numbers of tracks

at once. It also provides the capability to record and replay the status of tracks over

time, allowing the viewing of the history of the tracks in the TrackDisplayManager.

15.1 Library Usage and Configuration

As with the MapLink Core SDK, the Tracks SDK comes in 2 different configurations. It

should be noted that the library to be linked with should be determined by the Core SDK

library that you are using within your application. For example, if you are using the

Release mode, DLL version of the Core SDK (MapLink.lib) then you must use the

equivalent Tracks SDK library (MapLinkTrackManager.lib or

MapLinkTrackManager64.lib).

MapLinkTrackManager.lib or
MapLinkTrackManager 64.lib
Release mode, DLL version.
Uses Multithreaded DLL C++ run-time library.

Must also link the MapLink CoreSDK library
MapLink.lib/MapLink64.lib

Requires TTLDLL preprocessor directive.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing. Where X.Y is the version of
MapLink you are deploying.

MapLinkTrackManager d.lib or
MapLinkTrackManager 64d.lib
Debug mode, DLL version.
Uses Debug Multithreaded DLL C++ run-time
library.

Must also link the MapLink CoreSDK library
MapLinkd.lib/MapLink64d.lib

Requires TTLDLL preprocessor directive.

No redistributable run-time available.

KEYED : Development machines only.

15.2 Track Display Manager Basics

See the API documentation for further details.

mk:@MSITStore:C:/Maplink_Installations/Maplink_10_2/MapLink%20Documentation/Developer/MapLinkAPI.chm::/class_t_s_l_track_display_manager.html
mk:@MSITStore:C:/Maplink_Installations/Maplink_10_2/MapLink%20Documentation/Developer/MapLinkAPI.chm::/class_t_s_l_track_display_manager.html
mk:@MSITStore:C:/Maplink_Installations/Maplink_10_2/MapLink%20Documentation/Developer/MapLinkAPI.chm::/class_t_s_l_track_display_manager.html
mk:@MSITStore:C:/Maplink_Installations/Maplink_10_2/MapLink%20Documentation/Developer/MapLinkAPI.chm::/class_t_s_l_track_display_manager.html

Commercial in Confidence

 Dynamic Overlays with the DDO SDK

© 2021 Envitia Ltd 172 AUM1107

 Commercial in Confidence

16 Dynamic Overlays with the DDO SDK

The Dynamic Data Object (DDO) SDK allows developers to create fully dynamic overlays

within a MapLink application. Each object within this overlay can have application

specific data associated with it through custom derivations of the base class. The

architecture splits the real-world Data Object from the visualisation, allowing the same

object to be displayed in different ways and in different positions according to application

specific rules.

16.1 Library Usage and Configuration

As with the MapLink Core SDK, the Dynamic Data Object SDK comes in 2 different

flavours. It should be noted that the library to be linked with should be determined by

the Core SDK library that you are using within your application. For example, if you are

using the Release mode, DLL version of the Core SDK (MapLink.lib) then you must use

the equivalent Dynamic Data Object SDK library (MapLinkDDO.lib/MapLinkDDO64.lib).

The table below describes the preprocessor directives and link options that should be set

in the Project Properties for using the MapLink Dynamic Data Object SDK. For X11

targets, refer to the product Release Notes.

16.2 When to use Dynamic Data Objects

You have already seen how the Core SDK can be used to create dynamic overlays that

are displayed in a TSLStandardDataLayer. These overlays are dynamically created, but

typically change very little once they have been created. A Dynamic Data Object

however is expected to be completely dynamic. There are several specific circumstances

that would suggest that an Object Data Layer is used instead of a Standard Data Layer

• Objects are frequently created and destroyed.

• Objects are frequently moving or changing size.

• Completely different rendering is required on different Drawing Surfaces -

e.g. displayed as a symbol in one surface and a polygon in another.

• Objects are displayed on multiple Drawing Surfaces with differing

Coordinate Systems.

• Objects have significant amounts of application data.

• The rendering of an object requires the use of low-level Operating System

calls for performance reasons, or for primitives that MapLink does not

support.

MapLinkDDO.lib or MapLinkDDO64.lib
Release mode, DLL version.
Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a list
of run-time dependencies when redistributing.
Where X.Y is the version of MapLink you are
deploying.

MapLinkDDOd.lib or MapLinkDDO64d.lib
Debug mode, DLL version.
Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.
KEYED: Development machines only.

Commercial in Confidence

 Dynamic Overlays with the DDO SDK

© 2021 Envitia Ltd 173 AUM1107

 Commercial in Confidence

16.3 Object Data Layers

The TSLObjectDataLayer class is a Data Layer, just like the TSLMapDataLayer and

TSLStandardDataLayer that you have previously encountered. As such, it may be

created and added to one or more Drawing Surfaces from whence the contents are

displayed.

In the same way that a TSLStandardDataLayer contains instances of TSLEntity derived

objects, the TSLObjectDataLayer contains instances of TSLDynamicDataObject derived

objects. TSLDynamicDataObject is an abstract class and must be derived from before it

can be used. Each Dynamic Data Object has

• A real-world position and extent.

• Optional, application-specific connection to a database or live feed.

• One or more visualisation objects - one for each Drawing Surface that the

owning TSLObjectDataLayer is attached to.

The visualisation objects are instances of classes derived from the abstract

TSLDisplayObject. In MapLink parlance, these are Display Objects. When an Object

Data Layer is added to a Drawing Surface, all Dynamic Data Objects that it currently

contains have their instantiateDO method called in order to create a Display Object for

that Drawing Surface. When a new Dynamic Data Object is added to an Object Data

Layer, the instantiateDO method is called for each Drawing Surface that the layer is

currently attached to.

Query methods are available on the Object Data Layer to obtain a list of Dynamic Data

Objects in the layer, the Display Objects associated with a particular Drawing Surface or

the Display Objects within a particular area.

In addition to the position and extent associated with a Dynamic Data Object, Display

Objects have their own position and extent. By default, these are identical to those of

the owning Dynamic Data Object however they can be changed. This separation can be

useful under several circumstances:

• When the Display Object can be dragged or moved away from the position

of the Dynamic Data Object to prevent clutter or hiding of underlay data.

• When the Drawing Surfaces that the Object Data Layer is attached to have

different coordinate systems or TMC coordinate spaces.

• When the Display Object is fixed-size in pixels and hence requires a

different TMC extent in each Drawing Surface.

When the Object Data Layer is drawn onto a Drawing Surface, the list of Display Objects

is iterated and any Display Objects whose extent overlaps the drawn extent have their

‘draw’ method called. This method is passed a pointer to a TSLRenderingInterface

object which may be used to perform low-level rendering commands directly onto the

Drawing Surface without the need for the creation of geometric Entities.

Commercial in Confidence

 Dynamic Overlays with the DDO SDK

© 2021 Envitia Ltd 174 AUM1107

 Commercial in Confidence

16.4 Custom Dynamic Data Objects

TSLDynamicDataObject is an abstract class6 and must be derived from to be of use in an

application. The key things to take note of are that the destructor of the derived class

should be virtual and that the instantiateDO method should be implemented. The

signature of this method is:

 TSLDisplayObject* instantiateDO(TSLDisplayType key, int dsID = 0)

const ;

Note that this is a ‘const’ method7. A common mistake is to miss off the const modifier

resulting in the derived method never being triggered and a run-time error generated.

The key parameter is now obsolete and may be safely ignored. The dsID is the identifier

of the Drawing Surface as specified with the TSLDrawingSurface::id method. It is

supplied so that decisions can be made about the specific Drawing Surface that the

Display Object is being instantiated for.

For simple applications, the only thing required is to maintain the position and extent of

the Dynamic Data Object using the various position, move, translate and setExtent

methods. In such applications, it is recommended that any updateDOextent parameters

are set to true.

• The move methods set the position and extent of the Dynamic Data Object

and optionally update the Display Objects positions and extents.

• The translate methods adjust the position and extent of the Dynamic Data

Object by the specified delta values and optionally update the Display

Objects positions and extents.

• The position methods affect the position of the Dynamic Data Object

without updating any Display Objects or the Dynamic Data Object extent.

This is usually only called during initialisation of the Dynamic Data Object.

The derived class may contain any application specific information required and may be

driven by an application controlled external data feed.

16.5 Custom Display Objects

TSLDisplayObject is an abstract class and must be derived from to be of use in an

application. The key things to take note of are that the destructor of the derived class

should be virtual and that the draw method should be implemented. It is recommended,

but not required, that a copy constructor is also implemented8. The signature of the

draw method is:

 bool draw(TSLRenderingInterface *ri, TSLEnvelope *extent);

A simple custom implementation of this method will make a sequence of calls to the

Rendering Interface to set up attributes and draw graphical primitives. The Rendering

Interface also provides facilities for coordinate conversion and access to the low-level

Drawable or HDC. The varieties of attributes available are discussed in sections 10.6.1.

6 This isn’t strictly true! For backwards compatibility, there is a base class implementation of the
‘instantiateDO’ method. However, in practise, this should always be implemented by a derived

class. If you forget to provide this in a new class, then a run-time error,
DDO_INSTANTIATEDO_NOT_OVERRIDDEN, will be placed onto the error stack.
7 An issue with the Rational Rose documentation generator means that the const modifier is not

shown in the MapLink API documentation.
8 This is mainly used by the obsolete clone method. The clone and unclone methods are for

backwards compatibility only and do not need to be overridden.

Commercial in Confidence

 Dynamic Overlays with the DDO SDK

© 2021 Envitia Ltd 175 AUM1107

 Commercial in Confidence

For simple applications, the Display Object position and extent will be the same as the

owning Dynamic Data Object. More complex applications often involving multiple

representations are discussed in section 16.7. Note that it is the Display Object extent

that determines whether it is displayed, not the Dynamic Data Object extent. To modify

the position and extent of the Display Object independently from its owner, the following

methods may be used:

• The move methods set the position of the Display Object and update the

extents accordingly.

• The translate methods adjust the position of Display Object by the

specified delta values and update the extents accordingly.

• The position methods affect the position of the Display Object without

updating the extent. This is usually only called during initialisation of the

Display Object.

• The setExtent methods adjust the extent of the Display Object without

affecting the position.

• The setSize method updates the extent of the Display Object by defining

a size around the origin rather than the position. This is usually only called

during initialisation of the Display Object when the position of the owning

Dynamic Data Object will subsequently be used to update the extent.

• The getExtent method returns the current TMC extent of the Display

Object. Note, for fixed pixel size Display Objects, the current zoom factor

is used to convert the pixel size into a TMC extent.

For Display Objects that are fixed size in Device Units rather than in TMC Units, the

following methods may be used:

• The setPixSize method defines the size of the Display Object with a pixel

extent around the origin. This is used dynamically during the rendering

pass to determine whether the Display Object should be drawn. To

override this once it has been set use the normal setSize, or setExtent

methods.

• The getPixSize method queries the extent that was defined using

setPixSize. Note, for Display Objects that are not fixed size in Device

Units, this method returns current TMC extent.

• The fixedPixSize method can be used to query whether the Display

Object is fixed size in Device Units.

16.6 Walkthrough 4 – Adding Simple Dynamic Objects

This section guides you through adding a simple Dynamic Object Layer to the MapLink

application that has been developed in the earlier walkthroughs. By the end, you should

have an application that displays a single object which tracks the mouse cursor as it

moves over the map.

The example is based on MFC and the C++ SDK, but the same steps apply on X11

targets and with the other MapLink SDK’s.

Commercial in Confidence

 Dynamic Overlays with the DDO SDK

© 2021 Envitia Ltd 176 AUM1107

 Commercial in Confidence

16.6.1 Configure Project Settings

You need to set up the project settings according to the version of the MapLink libraries

you wish to use. These are described in section 16.1 and must match those used for the

Core MapLink SDK.

16.6.2 Adding a TSLObjectDataLayer

The Object Data Layer will be used to manage the Dynamic Data Object and will need to

be added to the document class along with the other Data Layers. It should be created

and destroyed where appropriate and added to the TSLDrawingSurface when the

document and view are bound together. As an optimisation, we will also make the Map

Data Layer double buffered to avoid having to redraw it every time the Dynamic Objects

are updated.

The layer should only be created after a map has been successfully loaded and should be

destroyed when the map layer is destroyed.

Check/change the following settings in Project Properties:

x64 configuration: check/change the following settings in Project Properties:

Under the Link,Input category, add MapLinkDDO64d.lib as an object/library for the Debug

configuration (or MapLinkDDO64.lib for the Release configuration).

Add #include “MapLinkDDO.h” to relevant files. In this example, just add it into

stdafx.h to keep things simple.

In the Document class definition, add a declaration of the Object Data Layer just after the
Standard Data Layer:

TSLMapDataLayer * m_mapDataLayer ;

TSLStandardDataLayer * m_stdDataLayer ;

TSLObjectDataLayer * m_objDataLayer ; // This line added

The new class variable should be initialised to 0 in the Document constructor.

CHelloGlobeDoc::CHelloGlobeDoc()

 : m_mapDataLayer(NULL),

 m_stdDataLayer(NULL),

 m_objDataLayer(NULL)

{

}

Commercial in Confidence

 Dynamic Overlays with the DDO SDK

© 2021 Envitia Ltd 177 AUM1107

 Commercial in Confidence

16.6.3 Creating a Custom Dynamic Data Object

Two custom classes are required – one derived from TSLDynamicDataObject to supply

the interface to the application data and one derived from TSLDisplayObject to provide

the visualisation.

In the Document OnOpenDocument method, instantiate a TSLObjectDataLayer if

the map is successful:

 if (!m_mapDataLayer->loadData(lpszPathName))

 {

 // Error handling as before

 return FALSE ;

 }

 m_stdDataLayer = new TSLStandardDataLayer() ;

 m_objDataLayer = new TSLObjectDataLayer() ;

In the Document DeleteContents method, add the following code to delete the

overlay layer:

 if (m_objDataLayer)

 {

 m_objDataLayer->destroy() ;

 m_objDataLayer = NULL ;

 }

Modify the Document addToSurface method as below to add the extra layer and to

make the map layer buffered:

 if (!m_mapDataLayer || !m_stdDataLayer

 || !m_objDatalayer || !drawingSurface)

 {

 return false ;

 }

 bool sts = drawingSurface->addDataLayer(m_mapDataLayer, "map") ;

 if (sts)

 {

 drawingSurface->setDataLayerProps(“map”,TSLPropertyBuffered,true);

 sts = drawingSurface->addDataLayer(m_stdDataLayer, "overlay") ;

 }

 if (sts)

 sts = drawingSurface->addDataLayer(m_objDataLayer, “dynamic”) ;

 return sts ;

Commercial in Confidence

 Dynamic Overlays with the DDO SDK

© 2021 Envitia Ltd 178 AUM1107

 Commercial in Confidence

Create a new class, MyDDO which derives from TSLDynamicDataObject and override the

instantiateDO method. Include the header file in the Document source file.

 class MyDDO : public TSLDynamicDataObject

 {

 public:

 MyDDO(void);

 virtual ~MyDDO(void);

 virtual TSLDisplayObject * instantiateDO(TSLDisplayType key, int dsID=0) const ;

 };

Create a new class, MyDO which derives from TSLDisplayObject and override the draw method.

Include the header file in the MyDDO source file.
 class MyDO : public TSLDisplayObject

 {

 public:

 MyDO(void);

 virtual ~MyDO(void);

 virtual bool draw(TSLRenderingInterface *ri, TSLEnvelope *extent);

 }

In the source file for MyDDO, provide initial empty definitions for the constructor, and destructor and

a simple implementation for the instantiateDo method.

 MyDDO::MyDDO(void) { }

 MyDDO::~MyDDO(void) { }

 TSLDisplayObject * MyDDO::instantiateDO(TSLDisplayType key,int dsID) const

 {

 return new MyDO() ;

 }

In the source file for MyDO, provide initial definitions for the constructor, and destructor and a simple

implementation for the draw method – draw a red circle 50 pixels high.

 MyDO::MyDO(void)

 { // Without this, the symbol disappears when the centre goes off screen

 setPixSize(-25, -25, 25, 25) ;

 }

 MyDO::~MyDO(void) { }

 bool MyDO::draw(TSLRenderingInterface *ri, TSLEnvelope *extent)

 { // 1023 = filled circle with cross, 181=red in standard config files

 ri->setupSymbolAttributes(1023, 181, 50, TSLDimensionUnitsPixels);

 ri->drawSymbol(position()) ;

 return true ;

 }

Commercial in Confidence

 Dynamic Overlays with the DDO SDK

© 2021 Envitia Ltd 179 AUM1107

 Commercial in Confidence

16.6.4 Moving the Dynamic Data Object

If you compile and run the application, then load the sample World map, you will see an

object appear in the middle of the map. This is the Display Object that has been

rendered using the MyDO::draw method. In a real application, there are likely to be

many more objects with their positions being driven via some external data feed. For

this example, however, we will merely update the position of the DDO on a mouse move

event. This will cause updates in all views displaying the Object Data Layer so if you

have created a multiple-document application then the object will move in all views

attached to the document.

Now compile and run your application. Load a map and you should see the DDO track

the mouse across the window. If you have a multiple document application, create a

new window on the document and note that both views are updated.

16.7 Advanced Uses of the Dynamic Data Object SDK

The earlier walkthrough has shown how to implement a simple dynamic overlay. Real

world applications are rarely that simple however! Common issues are discussed in the

following sections.

In the Document class definition, add a new public method updateDDOPosition, with the

following definition:

 bool CHelloGlobeDoc::updateDDOPosition(long x, long y)

 {

 if (m_objDataLayer)

 {

 // Get the solitary DDO – could iterate over DDO list

 TSLDynamicDataObject * ddo = m_objDataLayer->getDDO(0) ;

 if (ddo)

 {

 ddo->move(x, y, true) ; // true means also updates DO

 m_objDataLayer->notifyChanged() ; // Invalidates buffer

 UpdateAllViews(0) ; // Update views displaying doc

 return true ;

 }

 }

 return false ;

 }

In the View class, modify the OnMouseMove handler to call this new method that should make

the DDO track the mouse cursor. In the handler, declare a boolean variable ‘moved’ at the top

of the function and initialize it to false. If the call to ‘pan’ is successful, then set this variable

to ‘true’ as well as invalidating the view rectangle. Add the following code before the call to
CView::OnMouseMove

 if (m_drawingSurface && !moved)

 {

 CHelloGlobeDoc * doc = GetDocument() ;

 TSLTMC x, y ;

 if (m_drawingSurface->DUToTMC(point.x, point.y, &x, &y))

 doc->updateDDOPosition(x, y) ;

 }

Commercial in Confidence

 Dynamic Overlays with the DDO SDK

© 2021 Envitia Ltd 180 AUM1107

 Commercial in Confidence

16.7.1 Multiple Representations

Many applications require an object to have different representations on different

Drawing Surfaces. The Dynamic Data Object SDK allows you to implement these by

instantiating a different Display Object on different Drawing Surfaces.

The visualisation is encapsulated within the Display Object and may thus be very specific

to a particular usage. The Dynamic Data Object can distinguish between Drawing

Surfaces by using the dsID parameter that is passed to the instantiateDO method.

This is the value that has been set by the application using the TSLDrawingSurface::id

method.

16.7.2 Multiple Coordinate Systems

Some classes of application have a common dynamic overlay displayed on top of

multiple maps. These maps may be in different coordinate systems. For example, tracks

may be displayed on a Mercator or Dynamic Arc overview map and on a zoomed-in

detailed map – usually in an appropriate projection for the location such as the local UTM

zone.

The Dynamic Data Object SDK allows you to set the position and extent of Display

Objects independently of the Dynamic Data Objects. One way to make use of this

feature is to hold the generic position of the real-world object within the Dynamic Data

Object as latitude/longitude. During the instantiateDO call, overwrite the position of

the Display Object with the TMC unit position appropriate to the Drawing Surface for

which the Display Object is being created. A common trick is to set the

TSLDrawingSurface::id to the address of the Drawing Surface, thus allowing the

TSLDrawingSurface pointer to be used to perform coordinate transformations in the

instantiateDO call.

If the Display Object position is updated in sympathy with the Drawing Surface

coordinate system, then Display Objects can be positioned correctly in all circumstances.

16.7.3 Rendering using Xlib or Win32

For high performance, the low-level handle to the Drawable or HDC can be queried during

rendering using the Rendering Interface handleToDrawable method. The application can

then make low-level calls to create the visualisation. Note that the application must be

careful to leave the low-level handle in the state it was when returned from

handleToDrawable – for example, using the Win32 saveDC and restoreDC methods.

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 181 AUM1107

 Commercial in Confidence

17 Terrain SDK

The Terrain SDK is available for any mapping application that requires the addition of the

third dimension. Applications can use the data provided by the terrain SDK to perform

height queries, visibility calculations or even render the map data in three dimensions.

17.1 Library Usage and Configuration

As with the MapLink Core SDK, the Terrain SDK comes in 2 different flavours. It should

be noted that the library to be linked with should be determined by the Core SDK library

that you are using within your application. For example, if you are using the Release

mode, DLL version of the Core SDK (MapLink.lib or MapLink64.lib) then you must also

use the equivalent Terrain SDK library (TTLTerrain.lib or TTLTerrain64.lib).

TTLTerrain.lib or TTLTerrain64.lib
Release mode, DLL version.
Uses Multithreaded DLL C++ run-time library.

Must also link the MapLink CoreSDK library
MapLink.lib/MapLink64.lib

Requires TTLDLL preprocessor directive.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

TTLTerraind.lib or TTLTerrain64d.lib
Debug mode, DLL version.
Uses Debug Multithreaded DLL C++ run-time
library.

Must also link the MapLink CoreSDK library
MapLinkd.lib/MapLink64d.lib

Requires TTLDLL preprocessor directive.

No redistributable run-time available.

KEYED : Development machines only.

17.2 Where to Begin?

The Terrain SDK has been designed with the same philosophy in mind as the rest of

MapLink. That is, it can easily be integrated within any application with the minimum of

fuss. Therefore, the SDK has been developed to be very easy to use providing tools to

allow quick, easy access to the data.

The design of the Terrain SDK means that it is very simple to use. The process required

to access Terrain data within an application is as simple as the two steps below:

• Create an instance of the Terrain SDK main class object.

• Load some terrain data into the object.

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 182 AUM1107

 Commercial in Confidence

Once you have performed these two steps, you are ready to start querying the data.

Notice in the code fragment above that we have used the queryExtent function to

determine the coverage of the terrain database. This function returns coordinates in Map

Units (see 17.4) that define the bounding box for the terrain database.

The function, TSLTerrainDatabase::open takes an optional second parameter – a

pointer to a TSLPathList. If specified, the Terrain SDK looks for the file using the path

list. See the online documentation on TSLPathList for further information.

17.3 How Fast is Fast?

The architecture of the Terrain SDK has been optimised to allow efficient queries of

height data over any area extent. Within an application you can switch from performing

queries covering the whole world to performing queries within 1 square kilometre

without any significant change in performance or quality.

17.3.1 How does this work?

The Terrain SDK takes advantage of the fact that most queries on the Terrain database

are used to generate an output that is displayed to the user. For example, the Terrain

data might be used to display the height cross-section between two points. The

resolution of this data is limited by the resolution of the screen display; therefore, it is

not worth querying more points than can be represented on the screen. This is

compounded by the fact that the cross-section query might be generated from the user

dragging a line between the two points on a map display. This is also obviously limited

by the resolution of the screen display.

The Terrain database prepared by MapLink Studio is tiled at multiple resolutions. This

allows the Terrain SDK to choose the correct resolution depending on the type of query.

For example, a query covering the whole world will use a low-resolution layer whereas a

query covering a small area will use a higher resolution layer.

Add the following to your application to create an instance of the Terrain SDK main class and
load some data into it:

 TSLTerrainDatabase* terrainDB = new TSLTerrainDatabase;

 if (terrainDB->open(“terraindb.tdb”) != TSLTerrain_OK)

 {

 // Handle file open error

 }

 else

 {

 // Terrain database is open and ready to query. Start by getting

 // the extent of the database

 double x1, y1, x2, y2;

 terrainDB->queryExtent(x1, y1, x2, y2);

 }

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 183 AUM1107

 Commercial in Confidence

Figure 25 Terrain Pyramid

The Terrain SDK must be given enough information to determine the optimal level to

use. Whenever the extent of the area of terrain data you are interested in changes, you

must tell the Terrain SDK of the new extent. The Terrain SDK will then reconfigure itself

for the new extent. If the area of interest changes but the extent remains the same (i.e.

during a pan operation) then it is not necessary to notify the Terrain SDK.

17.4 Lining it All Up (Coordinate Systems)

When a map is prepared using MapLink Studio, the map is generated in a specific

coordinate system defined by the MapLink Studio project. The same is also true for

Terrain Databases generated using MapLink Studio. Therefore, when working with the

Terrain SDK it is important to know what coordinate system the Terrain Database uses.

All functions within the Terrain SDK that take coordinates as a parameter expect the

coordinates to be in Map Units (MU). Map Units are defined by the Output Coordinate

System defined in the MapLink Studio project. They are generally in metres, but this

does not always have to be the case. For example, if a terrain database is generated

using the MapLink “Default Coordinate System” i.e. no coordinate system is configured;

the Map Units will be in plain old WGS84 Latitude/Longitude positions. Whereas if the

output coordinate system is configured as UTM Zone 30 North, the Map Units will be in

metres with the origin being the centre of the projection.

The Terrain SDK provides functions to allow the coordinate system to be queried as well

as allowing conversion between MU and latitude/longitude. If you want to check if the

currently loaded terrain database is in a coordinate system that your application can

handle, then add the following code after the call to open the terrain database.

 Top Layer – Lowest Resolution

 Bottom Layer – Highest Resolution

 Intermediate resolution layers

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 184 AUM1107

 Commercial in Confidence

The TSLCoordinateSystem object returned by

TSLTerrainDatabase::queryCoordinateSystem can be used to convert from MU to

Latitude/Longitude and vice versa. In addition, the same methods have been provided in

the API interface to TSLTerrainDatabase. The TSLTerrainDatabase methods are

functionally identical to the TSLCoordinateSystem methods and are provided purely for

convenience.

Add this code after the call to terrainDB->open() to ensure the loaded terrain database is

using the default coordinate system:

 TSLCoordinateSystem* cs = terrainDB->queryCoordinateSystem();

 // In most cases cs will not be NULL but older versions of the

 // Terrain Database did not support coordinate system queries

 // therefore we must check the return value of

 // queryCoordinateSystem()

 if (cs)

 {

 // Make sure the coordinate system is the default coordinate

 // system so we can assume the Map Units are in Latitude/Longitude

 if (stricmp(cs->name(), “Default Coordinate System”) != 0)

 {

 // Not the default coordinate system – display an error

 }

 }

The first method for transforming coordinates uses TSLCoordinateSystem:

 TSLCoordinateSystem* cs = terrainDB->queryCoordinateSystem();

 if (cs)

 {

 double muOutX, muOutY;

 double latOut, lonOut;

 if (cs->latLongToMU(latIn, lonIn, &muOutX, &muOutY))

 {

 // Conversion successful

 }

 if (cs->MUToLatLong(muInX, muInY, &latOut, &lonOut))

 {

 // Conversion successful

 }

 }

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 185 AUM1107

 Commercial in Confidence

17.5 How do I get at the data?

Once a terrain database has been opened, querying the data is simple. There are three

methods provided which allow the database to be queried. The choice of query function

you use is dependent on your application – choose the function that is most convenient.

Each of the query functions returns whether the query was successful or not. Possible

return values for the query functions are:

TSLTerrain_OK The query was successful.

TSLTerrain_NoData There was no data in the database for the

requested position.

TSLTerrain_??? Any other error conditions

 The second method for transforming coordinates is more convenient:

 double muOutX, muOutY;

 double latOut, lonOut;

 if (terrainDB->latLongToMU(latIn, lonIn, &muOutX, &muOutY) ==

 TSLTerrain_OK)

 {

 // Conversion successful

 }

 if (terrainDB->MUToLatLong(muInX, muInY, &latOut, &lonOut) ==

 TSLTerrain_OK)

 {

 // Conversion successful

 }

To query a line of 10 points from the database:

 TSLTerrainDataItem dataItem[10];

 if (terrainDB->queryLine(muXstart, muYstart, muXend, muYend,

 10, dataItem) == TSLTerrain_OK)

 {

 // Query successful. The information about the point is

 // stored in the dataItem array

 }

To query a single point from the database:

 TSLTerrainDataItem dataItem;

 if (terrainDB->query(muX, muY, &dataItem) == TSLTerrain_OK)

 {

 // Query successful. The information about the point is

 // stored in dataItem

 }

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 186 AUM1107

 Commercial in Confidence

In each case, the data is returned in one or more TSLTerrainDataItem objects. For

efficiency, by default the query functions will only populate the fields that define the

requested position and the height/depth. It is important to note that even if the query

function returns TSLTerrain_OK, the height value may not be valid. This is because

some databases may contain ‘holes’ in their data coverage. This is indicated by the

TSLTerrainDataItem::m_isNull flag being set – see the table below.

You may have noticed that one of the optional parameters to the query functions is a

“filter”. This is used to define which fields to populate. The data returned by each filter is

defined in the table below:

Field Filter Description

m_x TSLTerrainData_Min MU X position of queried data

m_y TSLTerrainData_Min MU Y position of queried data

m_z TSLTerrainData_Min Height/Depth of requested

position in metres

m_isNull TSLTerrainData_Min Flag that is set to true if no

data existed at the requested

position. If set to false, the

m_z member contains valid

data

m_nearestX TSLTerrainData_Nearest Contains the MU x position of

the nearest actual point

within the terrain database

m_nearestY TSLTerrainData_Nearest Contains the MU y position of

the nearest actual point

within the terrain database

m_nearestZ TSLTerrainData_Nearest Contains the height value for

the point in the database at

m_nearestX, m_nearestY.

This field is only valid if

m_nearestIsNull is false

m_nearestIsNull TSLTerrainData_Nearest If true, m_nearestZ is not

valid otherwise it is valid

m_xResolution TSLTerrainData_HorizontalRes Defines the spacing of

columns in the grid. The

value is in MU.

To query a 10 x 5 grid from the database:

 TSLTerrainDataItem dataItem[10*5];

 if (terrainDB->queryArea(muBlX, muBlY, muTrX, muTrY,

 10, 5, dataItem) == TSLTerrain_OK)

 {

 // Query successful. The information about the point is

 // stored in the dataItem array. The data is stored row-by-row

 }

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 187 AUM1107

 Commercial in Confidence

Field Filter Description

m_yResolution TSLTerrainData_HorizontalRes Defines the spacing of rows

in the grid. The value is in

MU.

Some of the fields in TSLTerrainDataItem are unused in the current implementation of

the Terrain SDK. Only the fields in the table above are currently used.

Any number of filters can be combined to retrieve the required information.

TSLTerrainData_Min is always added regardless of what other filter flags are set. A

convenient definition is provided to get all available data: TSLTerrainData_All.

17.6 What happens when there is no data for a point? (Interpolation)

The simple answer is for the situation when a point is requested outside the extent

returned by a call to TSLTerrainDatabase::queryExtent. In this case, the function just

returns TSLTerrain_NoData. No further information is available. If, however, the point

lies within the extent but between actual entries in the database rather than directly on

an entry, a value is returned. The Terrain SDK calculates this value depending on the

interpolation parameter passed into the query function.

Available values for the interpolation parameter are:

TSLTerrainInterpolate_NONE A nearest neighbour algorithm is

used that returns the height of the

point nearest the requested point.

Very fast but less accurate.

TSLTerrainInterpolate_LINEAR Bilinear interpolation is used to

calculate height value. More

accurate but slightly slower.

TSLTerrainInterpolate_MIN,

TSLTerrainInterpolate_MAX

The lowest/highest neighbouring

value is used. Very fast but rarely

used due to their inaccuracy.

Whichever interpolation value is used, the filter parameter can be used to determine the

position and height value of the nearest point to the requested location. This can be

useful when for reasons of accuracy; only actual values stored within the database are to

be used in an application. This is illustrated in the code below:

To query a single point from the database getting all available associated information:

 TSLTerrainDataItem dataItem;

 if (terrainDB->query(muX, muY, &dataItem, TSLTerrainData_All)

 == TSLTerrain_OK)

 {

 // Query successful. All information about the point is

 // stored in dataItem

 }

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 188 AUM1107

 Commercial in Confidence

17.7 How Accurate is my Data? (Querying Different Levels)

Referring back to section 17.3, we remember that the Terrain Database is stored in a

pyramid structure to allow very quick queries of the data. How does the Terrain SDK

know which pyramid level we want to use? In some cases, we want to obtain the most

accurate height value for a location. How do we make sure we use the most detailed

layer?

The second question in the paragraph above is the easiest to answer; “How do we make

sure we use the most detailed layer?” There is one more optional parameter for the

query functions that we haven’t looked at yet. Setting the Boolean parameter,

highestRes to true notifies the Terrain SDK that we want the height value to be read

from the highest resolution layer that contains the requested point. Setting it to false will

allow the Terrain SDK to optimise the speed of the request at the expense of some of the

accuracy.

Beware when using the highestRes parameter when covering a large area of the terrain

database – the query could take a substantial amount of time.

Onto the other question: “How does the Terrain SDK know which layer in the pyramid to

use?” The simple answer is: you have to tell it! The mechanism for telling the Terrain

SDK what resolution of data you want has been designed to tie-in with a MapLink

application that displays map data. A quick explanation is required:

In most MapLink applications, a map display is provided and the user is given controls to

pan, zoom, etc. Quite often, the Terrain SDK is incorporated into the application to allow

the user to perform queries on terrain data. For example, the application can display a

cross-section of the terrain between two points when the user drags a line over the map

display. You can see from this example that it is pointless querying more points from the

terrain database than can be displayed by the resolution of the screen. The Terrain SDK

takes advantage of this and adjusts the pyramid level accordingly.

To query a single point from the database using the highest resolution layer available. Note the
“true” parameter to the query function that informs the Terrain SDK that we want the highest
resolution data.

 TSLTerrainDataItem dataItem;

 if (terrainDB->query(muX, muY, &dataItem, TSLTerrainData_Min, true)

 == TSLTerrain_OK)

 {

 // Query successful. Highest resolution data obtained

 }

To query a single point from the database getting all available associated

information:

 TSLTerrainDataItem dataItem;

 // Use bilinear interpolation for a more accurate result

 if (terrainDB->query(muX, muY, &dataItem,

 TSLTerrainData_Min | TSLTerrainData_Nearest, false,

 TSLTerrainInterpolate_LINEAR) == TSLTerrain_OK)

 {

 // Query successful.

 // m_x and m_y contain the requested location.

 // m_z contains a value obtained by bilinear interpolation

 // m_nearestX, m_nearestY and m_nearestZ contain the location

 // and height/depth of the nearest stored data in the database

 }

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 189 AUM1107

 Commercial in Confidence

This is surprisingly simple to setup within a MapLink application – all you need to do is

tell the Terrain SDK whenever the map extent changes – i.e. on a zoom operation or

when the map window size changes. Note that it is not necessary to tell the Terrain SDK

when the map is panned as this does not change the extent of the map.

17.8 Contouring

The Terrain SDK also allows for the generation of contour lines or polygons from the

same height information used in a terrain database. The format that the generated

contour information is displayed in is controlled entirely by the application via the use of

rendering callbacks.

17.8.1 Providing Data for Contouring

The data to contour is expected in the form of a TSLTerrainContourVertexList of

TSLTerrainContourVertex objects. Each vertex object represents data at a single point,

and when all vertices are combined, they should form a regular or irregular grid inside

the list object.

Each vertex can store one or more pieces of height information, named ‘attributes’, for

the point it represents. Each of these attributes can be used to model different

information about the point that the vertex represents. For example, the first attribute

might be height information for the terrain at that point, a second attribute might be a

recorded temperature value at that point and a third attribute might be a humidity

value. Contour information can be generated separately for each of these attributes.

Each vertex within the list must have the same number of attributes.

In the handler for the MapLink map zoom command, notify the Terrain SDK of the new extent.

if (m_drawingSurface->zoom(25, true, false))

{

 // Zoom was successful. Tell the Terrain SDK

 // The function that notifies the Terrain SDK requires the size

 // of the map window and the new extent. Assume the map window

 // is the same size as this window

 CRect rc;

 GetClientRect(rc);

 // Get the extent of the data. We need to convert this to MU. This

 // assumes the MU of the map and of the Terrain SDK are the same

 double muX1, muY1, muX2, muY2;

 if (m_drawingSurface->getMUExtent(&muX1, &muY1, &muX2, &muY2))

 {

 // We have enough information now

 terrainDB->displayExtent(rc.Width(), rc.Height(), muX1, muY1,

 muX2, muY2);

 // That’s it! Terrain database optimised for this

 // screen resolution

 }

 InvalidateRect(0, FALSE) ;

}

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 190 AUM1107

 Commercial in Confidence

This example shows loading of height information from a terrain database and

storing the data in a TSLTerrainContourVertexList ready for the generation of

contour lines.

// Process the terrain data into a terrain database

if(m_terrainDB.open(terrainDBFile.c_str()) != TSLTerrain_OK)

 return false;

// Query the extent of the terrain data

long x1, y1, x2, y2;

if(m_terrainDB.queryExtent(x1, y1, x2, y2) != TSLTerrain_OK)

 return false;

// Inform the terrain database of the size of our drawing surface

// so it can determine a good resolution for the data

long duMinX, duMaxX, duMinY, duMaxY;

m_drawingSurface->getDUExtent(&duMinX, &duMinY, &duMaxX, &duMaxY);

m_terrainDB.displayExtent(duMaxX - duMinX, duMaxY - duMinY,

 x1, y1, x2, y2);

// Read the data from the terrain database

TSLTerrainDataItem *dataItems =

 new TSLTerrainDataItem[m_terrainGridWidth * m_terrainGridHeight];

if(m_terrainDB.queryArea(x1, y1, x2, y2, m_terrainGridWidth,

 m_terrainGridHeight,

 dataItems) != TSLTerrain_OK)

{

 return false;

}

// Convert the terrain database to contour vertices so we can give

// them to the contour object

TSLTerrainContourVertexList *vertices =

 new TSLTerrainContourVertexList();

for(int i = 0; i < m_terrainGridHeight; ++i)

{

 for(int j = 0; j < m_terrainGridWidth; j++)

 {

 vertices->addVertex(dataItems[(i * m_terrainGridWidth) + j].m_x,

 dataItems[(i * m_terrainGridWidth) + j].m_y,

 1,

 &dataItems[(i * m_terrainGridWidth) + j].m_z);

 }

}

// Height information is now stored in the vertex list so the data

// from the terrain database is no longer required

delete[] dataItems;

TSLTerrainContour contour = new TSLTerrainContour();

// Give our vertex list to the contour object so we can then perform

// contouring – the contour object assumes ownership of the vertex

// list

contour->setVertices(vertices);

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 191 AUM1107

 Commercial in Confidence

Although the contour object assumes ownership of the vertex list, the data contained

within the list can still be modified by the application without having to generate a new

vertex list and setting it on the contour object. This avoids having to do large copies

when you wish to modify the data used for contouring. If this is done, the

TSLTerrainContour object should be informed of the change via the notifyChanged()

method in order to ensure that the updated data is used for future contouring

operations.

17.8.2 Types of Contours

Contour information can be generated either as polygons or lines. When generating

contours as lines there are three different algorithms that can be used, specified by the

TSLTerrainContourLineType enumeration. The simplest of these is

TSLTerrainContourLineTypeSimple which uses a Triangulated Irregular Network (TIN)

to calculate the contour lines. TSLTerrainContourLineTypeStandard uses a similar

method but performs some optimisation on the resulting contour lines to remove

duplicate points from the calculated contours. TSLTerrainContourLineTypeCONREC uses

a different algorithm that in most cases produces contour lines as good as those

generated by the simple or standard methods but is substantially faster.

When generating contours as polygons there is no algorithm choice to make.

17.8.3 Drawing the Contours

Contours generated from the TSLTerrainContour class are passed to the application via

one of the TSLTerrainContourCallbacks virtual methods. Which callback is invoked is

dependent on which type of contour (see section 17.8.2) was requested according to the following
table:

Callback Used by

TSLTerrainContourCallbacks::progress All

TSLTerrainContourCallbacks::drawLine TSLTerrainContour::drawContourLine

using the following types:

TSLTerrainContourLineTypeSimple

TSLTerrainContourLineTypeCONREC

TSLTerrainContourCallbacks::drawPolygon TSLTerrainContour::drawContourPolygon

TSLTerrainContourCallbacks::drawPolyline TSLTerrainContour::drawContourLine

using the following types:

TSLTerrainContourLineTypeStandard

TSLTerrainContourCallbacks::drawText TSLTerrainContour::drawContourLine

using the following types:

TSLTerrainContourLineTypeStandard

TSLTerrainContourCallbacks::drawTIN TSLTerrainContour::drawTIN

You should override each of the callbacks that will be used for your selected method of

contour generation. The TSLTerrainContourCallbacks class provides default

implementations of all the callbacks so that you only need to implement the ones that

you are interested in.

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 192 AUM1107

 Commercial in Confidence

The callbacks will be invoked numerous times before the original draw call returns. In

order to prevent excessive redrawing your application should wait until the draw call has

returned before updating the display of your application.

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 193 AUM1107

 Commercial in Confidence

This example shows an implementation of the

TSLTerrainContourCallbacks::drawPolyline() callback in which the generated

contour lines are added to a TSLStandardDataLayer to be drawn to the screen

after contour generation has finished.

void TerrainContouringView::drawPolyline (TSLTerrainContourVertexList*

vertices, double attribute)

{

 // The coordinates of the vertices given to us are in the coordinate

 // system of the terrain data, which may not be the same as that of

 // the map we have loaded. Therefore it may be necessary to

 // convert the coordinates so the contour lines appear in the correct

 // place on the map.

 TSLCoordinateSystem *terrainCS =

 m_terrainDatabase->queryCoordinateSystem();

 const TSLCoordinateSystem *mapCS =

 m_mapDataLayer->queryCoordinateSystem();

 bool needToConvert = false;

 if(terrainCS->id() != mapCS->id() ||

 terrainCS->getTMCperMU() != mapCS->getTMCperMU())

 needToConvert = true;

 TSLCoordSet *coords = new TSLCoordSet();

 // Process the list of vertices given to us into a polyline so we can

 // display it on the map in a standard data layer

 for(int i = 0; i < vertices->numberOfVertices(); ++i)

 {

 TSLTerrainContourVertex &vertex = vertices->at(i);

 TSLTMC tmcX = 0, tmcY = 0;

 if(!needToConvert)

 {

 // The terrain database and map coordinate systems are the same

 terrainCS->MUToTMC(vertex.x(), vertex.y(), &tmcX, &tmcY);

 }

 else

 {

 // Convert between the terrain database and map coordinate systems

 double lat = 0.0, lon = 0.0;

 terrainCS->MUToLatLong(vertex.x(), vertex.y(), &lat, &lon);

 mapCS->latLongToTMC(lat, lon, &tmcX, &tmcY);

 }

 coords->add(tmcX, tmcY);

 }

 TSLEntitySet *es = m_contourLayer->entitySet();

 TSLPolyline *line = es->createPolyline(0, coords, true);

 if(line)

 {

 line->setRendering(TSLRenderingAttributeEdgeStyle, 1) ;

 // Determine line colour based on the height of the contour

 long colour = (255 / m_maxTerrainHeight) * attribute;

 line->setRendering(TSLRenderingAttributeEdgeColour,

 TSLDrawingSurface::getIDOfNearestColour(colour, 0, 255 - colour));

 line->setRendering(TSLRenderingAttributeEdgeThickness, 1) ;

 }

}

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 194 AUM1107

 Commercial in Confidence

17.8.3.1 Drawing the Contour Labels

When drawing contour lines using TSLTerrainContourLineTypeStandard there is the

option to draw labels for the generated contour lines. This is enabled by passing a non-

NULL value to the textPrefix parameter of the

TSLTerrainContour::drawContourLine() method, which will be passed to the

TSLTerrainContourCallbacks::drawText() callback. This is usually set to a description

of what the value in the label will represent (e.g. ‘Height:’ or ‘Temperature:’), but if

nothing is desired can be set to an empty string.

When using text labels with the alignment value set to TSLVerticalAlignmentMiddle

the contour lines are split at appropriate points around the labels so that the lines do not

run through the labels themselves. As the contents of the labels are controlled via the

application by the TSLTerrainContourCallbacks::drawText(), this necessitates

informing the contour object of the maximum length that the text strings will be when

the TSLTerrainContour::drawContourLine() method is invoked.

One way of doing this is to create a dummy text object of the longest expected length

and use this to determine the size to pass in as follows:

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 195 AUM1107

 Commercial in Confidence

17.8.4 Performance Notes

Calculating contours can take a considerable amount of time when given large amounts

of data to work on. As the result of a draw operation will not change if the data remains

the same, it is more sensible to store the results of the contouring operation in a form

TSLText *textObj = m_contourLayer->entitySet()->createText(0, 0, 0,

 maxLengthLabel.str().c_str(), 100);

// It is necessary to set up the following attributes on the text object

// for updateEntityExtent() to work

textObj->setRendering(TSLRenderingAttributeTextSizeFactor,

 m_textSizeFactor);

textObj->setRendering(TSLRenderingAttributeTextSizeFactorUnits,

 TSLDimensionUnitsMapUnits);

textObj->setRendering(TSLRenderingAttributeTextFont, 2);

// Set an entity ID on the temporary text object so we can remove it

// once we're done

textObj->entityID(INT_MAX);

m_contourLayer->notifyChanged();

// Store the currently viewed area of the map. In order to calculate the

// extent of the text object we need to change the viewed area so that

// our temporary text object would be visible

double viewedUUX1, viewedUUY1, viewedUUX2, viewedUUY2;

m_drawingSurface->getUUExtent(&viewedUUX1, &viewedUUY1,

 &viewedUUX2, &viewedUUY2);

double newUUX1, newUUY1, newUUX2, newUUY2;

long newSizeArea = 2 * m_textSizeFactor;

m_drawingSurface->MUToUU(-newSizeArea, -newSizeArea,

 &newUUX1, &newUUY1);

m_drawingSurface->MUToUU(newSizeArea, newSizeArea,

 &newUUX2, &newUUY2);

m_drawingSurface->resize(newUUX1, newUUY1,

 newUUX2, newUUY2, false, true);

// Now calculate the size of our text object

m_drawingSurface->updateEntityExtent(textObj);

TSLEnvelope env = textObj->envelope(m_drawingSurface->id());

unsigned long envWidth = env.width();

// Now we have the width of the text object in TMCs we need to convert this to

the terrain database units

double lat1, lon1, lat2, lon2, x1, y1, x2, y2;

m_drawingSurface->TMCToLatLong(env.bottomLeft().x(),

 env.bottomLeft().y(), &lat1, &lon1);

m_drawingSurface->TMCToLatLong(env.topRight().x(),

 env.topRight().y(), &lat2, &lon2);

m_terrainDB.latLongToMU(lat1, lon1, &x1, &y1);

m_terrainDB.latLongToMU(lat2, lon2, &x2, &y2);

// This is the width of the text labels in the terrain database units

// with some additional space either side

width = (x2 - x1) * 1.5;

// Now we have the width we no longer need our text object

m_contourLayer->removeEntity(INT_MAX);

// Finally, reset the viewied area of the map back to what it was originally

m_drawingSurface->resize(viewedUUX1, viewedUUY1,

 viewedUUX2, viewedUUY2, false, false);

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 196 AUM1107

 Commercial in Confidence

that allows for fast rendering. The example in section 17.8.3 does this by creating

geometry objects for each contouring line and storing them in a TSLStandardDataLayer.

This prevents needless recalculation of the same points on each draw in the application.

17.9 Intervisibility/Viewshed Calculations

The Terrain SDK provides the ability to perform point-to-point line of sight calculations,

along with area viewshed/intervisibility calculations. An area viewshed determines which

points can/cannot be seen from a given start point by performing multiple line of sight

calculations.

This functionality is exposed via a flexible set of classes, allowing the calculation to be

integrated with a variety of applications. This API is currently only provided via the C++

interfaces.

The viewshed API consists of the following object types:

• Input objects

• Location filter objects

• Algorithm objects

• Compositor objects

• Output objects

These objects must be combined in order to create a complete viewshed calculation

pipeline. Basic implementations of these objects are provided so that a calculation can

be performed with minimal effort.

Except for the algorithm object an application may provide custom implementations of

these objects in order to provide application-specific input data and display results in an

efficient manner.

17.9.1 Input objects

Input objects (TSLTerrainVSInput) define the interface used by the viewshed

algorithms in order to retrieve source data. The input object exposes terrain data as a 2-

dimensional array of doubles and a geographical extent.

The following implementations are provided:

• TSLTerrainVSInputArray – This basic implementation can expose

application-provided data to the viewshed algorithm.

• TSLTerrainVSInputTerrainDatabase – This is a more advanced input

object, which exposes a MapLink terrain database (TSLTerrainDatabase)

to the viewshed algorithm. In a similar manner to the terrain data queries,

this object will select an appropriate level of detail from the database for

the desired output size/extent.

• TSLTerrainVSInputEarthCurvature – This class wraps an existing input

object and applies height corrections to compensate for earth curvature.

Curvature corrections can be based on a visual or radar line of sight.

17.9.2 Location Filters

The location filter interface (TSLTerrainVSLocationFilter) is provided as a means of

limiting the viewshed parameters to specific locations. The exact manner in which these

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 197 AUM1107

 Commercial in Confidence

filters are applied depends on the specific viewshed algorithm. Some algorithms may

apply the filter to every input point, but some may not.

The API documentation for each viewshed algorithm specifies how these filters are

applied to the process.

17.9.3 Algorithm Objects

Algorithm objects (TSLTerrainVSAlgorithm) contain the core viewshed functionality.

They are responsible for performing calculations with the specified parameters and using

the provided input/filter/compositor/output objects as needed.

The following viewshed algorithms have been provided:

• TSLTerrainVSAlgorithmRFVS – An algorithm object, based on the RFVS

[Frankil and Ray 1994] algorithm.

The following parameters may be used when calculating a viewshed:

• Start/Centre point

• Start height (Absolute or relative to ground)

• End height (Absolute or relative to ground)

• Maximum Radius

The resolution and extent of a viewshed output is a combination of the input object’s

extent/resolution, and the specified parameters.

17.9.4 Compositor and output objects

Compositor objects (TSLTerrainVSCompositor) are provided with the results of the

viewshed calculation. Each point in the calculation is passed to the compositor, along

with:

• Whether the point can be seen from the viewshed’s centre.

• The height of the point, including any height offsets/corrections applied

during the calculation.

The following compositor object implementations are provided:

• TSLTerrainVSCompositorVisibility – A basic compositor which will

store the visibility of each point in the output object.

• TSLTerrainVSCompositorCumulative – A basic compositor which will

store the visibility of each point in the output object. This compositor can

be used to accumulate the output of multiple viewshed calculations, in

order to determine which areas can/cannot be seen from a set of points.

Output objects (TSLTerrainVSOutput) are used for storing result data, by the provided

compositor objects.

The following output object implementations are provided:

• TSLTerrainVSOutputArray – A basic output object which will store data in

a 2-dimensional array.

The provided implementations are designed so that any compositor can be used with any

output object. This allows an application to perform viewshed calculations with minimal

effort, however the generic interface between the compositor and output objects results

in reduced calculation performance.

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 198 AUM1107

 Commercial in Confidence

Most applications should implement their own compositor object. This allows the

viewshed results to be rendered immediately without first going through an output

object.

17.9.5 Examples

17.9.5.1 Single point-to-point line of sight

// Set up the input object, using the current display size, and extent

// The provided extent/display size will determine which level of detail

// is used within the terrain database.

TSLTerrainVSInputTerrainDatabase* input =

 new TSLTerrainVSInputTerrainDatabase(&m_terrainDatabase,

 displayExtent, displayWidth, displayHeight);

// Setup the viewshed algorithm

// For single LOS calculations, the RFVS algorithm doesn't require

// a compositor object.

// It does however require an input object, to calculate whether

// the line is blocked by terrain.

TSLTerrainVSAlgorithmRFVS algorithm(input, NULL);

// Determine whether the end point can be seen from the start point.

// If it cannot, the 'blocked' point will be populated

double LOSStartX = -122.0;

double LOSStartY = 37.0;

double LOSStartZ = 100.0;

double LOSEndX = -121.5;

double LOSEndY = 37.35;

double LOSEndZ = 0.0; // Sea level

// Storage for the 'blocked' point

double LOSBlockedX = 0.0;

double LOSBlockedY = 0.0;

double LOSBlockedZ = 0.0;

if(algorithm.calculateLineOfSight(

 LOSStartX, LOSStartY, LOSStartZ,

 LOSEndX, LOSEndY, LOSEndZ,

 LOSBlockedX, LOSBlockedY, LOSBlockedZ)

 == TSLTerrainVSAlgorithmRFVS::LOSResultBlocked)

{

 // The end point is not visible from the start point.

 // The point where the line is blocked is stored in

 // LOSBlockedX, LOSBlockedY, LOSBlockedZ

}

// The end point is visible from the start point.

// Release our references

input->dec();

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 199 AUM1107

 Commercial in Confidence

17.9.5.2 Area viewshed using provided classes

The following example performs a single viewshed calculation using application-provided

terrain data.

Note: As this example uses the generic compositor/output objects it is not the fastest

method of performing a viewshed, nor the recommended approach for most applications.

This approach should mainly be used when performance is not critical and the results do

not need to be displayed immediately.

// Create an input object array, at the specified size/extent.

// Data should be populated from the application-specific source.

// 100 x 100 sample grid, covering -30.0,-60.0 to 30.0,60.0.

// The provided coordinate system is EPSG:4326 (A valid coordinate system must

// be provided for viewshed calculations)

TSLTerrainVSInputArray* input = new TSLTerrainVSInputArray(

 100, 100,

 TSLMUExtent(-30.0, -60.0, 30.0, 60.0),

 coordSys4326);

// Create an output object to store viewshed results.

// This object should be created with the same extent/size as the input object.

// The output may be re-used for multiple viewsheds, however this basic

// implementation only provides basic validation of the coordinates.

TSLTerrainVSOutput::dataItem defaultVal;

defaultVal.type = TSLTerrainVSOutput::typeTSLTerrainVSVisibility;

defaultVal.data.v = TSLTerrainVSVisibility::TSLTerrainVSNoData;

TSLTerrainVSOutputArray* output = new TSLTerrainVSOutputArray(

 input->width(), input->height(),

 input->queryExtent(), defaultVal);

// Create a compositor object.

TSLTerrainVSCompositorVisibility* compositor =

 new TSLTerrainVSCompositorVisibility(output);

// Create the algorithm object.

TSLTerrainVSAlgorithmRFVS algorithm(input, compositor);

// Perform a viewshed calculation.

// The format of the data, and interpretation of results is defined by the

// compositor object.

// In this case, the visibility of each point will be stored in the output

// array.

algorithm.calculateViewshed(

 centerX, centerY,

 startHeightOffset, startRelativeToGround,

 maximumRadius, endHeightOffset, endRelativeToGround);

// Release our references

input->dec();

compositor->dec();

output->dec();

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 200 AUM1107

 Commercial in Confidence

17.9.6 Performance Considerations

The overall performance of the viewshed algorithm mainly depends on the efficiency of

the input/compositor objects, the extent of the viewshed calculation, and the resolution

of the terrain data.

The RFVS viewshed algorithm, as used in the terrain viewer, is generally fast enough to

be considered ‘real-time’ when performing calculations up to 10,000 x 10,000 samples

(Running on an Intel dual-core processor @ 3.6GHz). For example, if the source terrain

data has a post-distance of 20m the performance should be acceptable with a maximum

radius of up to 100km. If the terrain data is of a higher resolution, or the maximum

radius parameter is increased, then the performance will be decreased accordingly.

If using the TSLTerrainVSInputTerrainDatabase class an appropriate level of detail will

be selected from the terrain database. However, the lowest detail in the database may

still be too high if attempting to perform a very large viewshed. Where possible the post

distance of the data should be checked and the viewshed radius limited accordingly.

The RFVS viewshed algorithm will use multiple threads where available so any

application-defined objects must be threadsafe. The maximum number of threads used

by the algorithm may be specified via the TSLTerrainVSAlgorithm::maxThreads

method.

17.9.7 Application integration

This section details how to integrate the viewshed functionality with an application. This

is intended for applications which need to overlay viewshed results on a map display.

An example of this is provided by the ‘Terrain Viewer (C++ and MFC)’ sample

application.

This application allows the following viewshed parameters to be adjusted:

Start/centre point

Start height (Absolute or relative to ground)

End height (Absolute or relative to ground)

• Maximum Radius

Correction for earth curvature (Visual or radar)

Result visualisation colours

17.9.7.1 Input object setup

If using a MapLink terrain database, the application simply needs to create an instance

of TSLTerrainVSInputTerrainDatabase.

TSLTerrainVSInputTerrainDatabase::displayParameters should be called before

performing each viewshed, to ensure that the correct extent/data resolution is exposed

via the input object. In the terrain viewer, this happens as part of

TSLViewModeArea::performViewshed and CTerrainViewerDoc::calculateViewshed.

The input object will query data from the nearest level of detail. This means that the

viewshed calculation will be performed at the data resolution, and the results will need to

be resized by the compositor when drawn to the screen.

The application may use other sources of data through the provided

TSLTerrainVSInputArray class or by providing an application-specific input object.

Commercial in Confidence

 Terrain SDK

© 2021 Envitia Ltd 201 AUM1107

 Commercial in Confidence

The terrain viewer also creates an instance of TSLTerrainVSInputEarthCurvature. This

is used as the input object if earth curvature corrections have been enabled in the

options. Enabling earth curvature correction will decrease the viewshed performance as

it adds an additional calculation to each sample point.

17.9.7.2 Application-specific compositor

In order to display the viewshed results the terrain viewer defines the

CTerrainClientCustomDataLayer class. This class inherits from both

TSLTerrainVSCompositor, and TSLClientCustomDataLayer.

When a viewshed calculation is performed the results are passed to

CTerrainClientCustomDataLayer::setData. This method stores the viewshed results

directly into a Windows HBITMAP. This is then drawn over the map via the

TSLClientCustomDataLayer::drawLayer method.

This approach enables the application to perform calculations without making

unnecessary copies of the data and with a minimum number of function calls. It also

allows the rendering of the results to be controlled as a MapLink data layer.

The compositor in the terrain viewer has been designed for single-threaded use only. If

an application is going to perform viewsheds over a large area they should be performed

in a background thread in order to keep the application responsive.

Commercial in Confidence

 MapLink 3D Earth SDK

© 2021 Envitia Ltd 202 AUM1107

 Commercial in Confidence

18 MapLink 3D Earth SDK

The MapLink Pro Earth SDK provides a MapLink 3D API to customer applications, building

upon the powerful and performant OsgEarth 3D library.

18.1 Sample Application

A sample application is provided to demonstrate capability and the usage of the API. The

sample code may be found in the installation at Samples/NT/3DEarth.

18.1.1 Interaction Modes

The sample application demonstrates various methods of interacting with the scene,

accessible through the sample application’s Interaction Mode menu. When a menu entry

is selected that mode will be activated and remain active until the user selects another.

The implementation of these interaction modes may be found in the interactions folder

within the sample application.

18.1.2 Trackball View Interaction

A mode which provides the ability to navigate the globe using the mouse pointer.

When active (by the default settings), the following actions can be performed:

• Pan: Click and drag the left mouse button across the globe to move the

camera’s eye and target together across the map. Movement is relative to

the actual movement of the mouse pointer across the map.

• Tilt: Click and drag the right mouse button to change the orientation of the

camera’s eye relative to the target. Vertical mouse movement raises or

lowers the tilt angle, and horizontal movement changes the heading.

• Zoom: Scroll with the mouse wheel to decrease or increase the distance

between the camera and the target. Forward scrolling brings the camera

closer to the target.

An alternative constructor has been provided to allow remapping of Pan and Tilt

operations to different mouse buttons.

The sensitivity (the factor by which mouse movement affects the camera movement)

can also be changed for the Tilt and Zoom operations. This can be done in the

alternative constructor, or via separate setter functions.

18.1.3 Select Geometry/Track

A mode which provides picking/selection functionality of tracks and geometry primitives.

When active a left click will perform picking operations on the scene bound to the left

mouse button.

If a Track is clicked it will become the active track and display additional information.

If a geometry instance is clicked its rendering will toggle the primitive’s style between a

normal and selected variant, which primarily affects the colour of the primitive.

18.1.4 Create Polygon

A mode which creates earth::geometry::Polygon primitives within the scene.

Commercial in Confidence

 MapLink 3D Earth SDK

© 2021 Envitia Ltd 203 AUM1107

 Commercial in Confidence

The left mouse button will start a new primitive or add points to the in-progress one. The

right mouse button will finish creation of the primitive and add the final version into the

scene.

These polygons will be created as draped 2D primitives and will automatically follow any

underlying terrain.

18.1.5 Create Polyline

A mode which creates earth::geometry::Polyline primitives within the scene.

The left mouse button will start a new primitive or add points to the in-progress one. The

right mouse button will finish creation of the primitive and add the final version into the

scene.

These lines will be created as draped 2D primitives and will automatically follow any

underlying terrain.

18.1.6 Create Text

A mode which creates earth::geometry::Text instances within the scene.

The left mouse button will create a new text instance at the clicked location, with the

value ‘Test Text’.

18.1.7 Create Symbol

A mode which creates earth::geometry::Symbol instances within the scene.

The left mouse button will create a new symbol instance at the clicked location,

displayed as a MapLink vector symbol.

18.1.8 Create Extruded Polygon

A variant of the polygon mode which creates extruded primitives. These primitives are

not draped over the terrain but are extruded to form 3D volumes.

The left mouse button will start a new primitive or add points to the in-progress one. The

right mouse button will finish creation of the primitive and add the final version into the

scene.

18.1.9 Create Extruded Polyline

A variant of the polyline mode which creates extruded primitives.

These primitives are not draped over the terrain but are extruded to form vertical walls.

The left mouse button will start a new primitive or add points to the in-progress one. The

right mouse button will finish creation of the primitive and add the final version into the

scene.

18.1.10 Delete Geometry

A mode which deletes geometry primitives from the scene.

Clicking the left mouse button on a geometry instance will remove it from the scene.

This interaction will have no effect on tracks.

Commercial in Confidence

 MapLink 3D Earth SDK

© 2021 Envitia Ltd 204 AUM1107

 Commercial in Confidence

18.2 API usage

18.2.1 Layer loading

To load a map file the user needs to do the following:

• Create a TSLMapDataLayer;

• Call loadData on the layer and provide the path to the .map file;

• Add the layer to the earth::Surface3D.

See CEarthSampleDoc::loadMapLayer and CEarthSampleView::addDataLayer in the

EarthSample project for usage examples.

18.2.2 Terrain Loading

To load a Terrain database into the scene, the user needs to:

• Create a TSLTerrainDatabase;

• Call the open function on the database, providing a path to the database

file;

• Add the database to the earth::Surface3D.

See CEarthSampleDoc::loadTerrainDatabase and EarthSampleView::addTerrainDatabase

in the EarthSample project for usage examples.

18.2.3 Camera Movement

To update the camera, the user needs to do the following:

• Query the camera from the earth::Surface3D;

• The position of the camera and other such variables can be updated by

calling the relevant functions on the class;

• To set the camera’s target position, the easiest way is to use the lookAt

function which sets the camera’s eye and target position simultaneously,

with roll angle as an additional option.

See CCameraControlFormView::updateCamera in the EarthSample project for usage

examples.

18.2.4 Track Management

To simulate tracked objects on the globe, the user needs to:

• Create earth::TrackSymbol visualisations, which define how a Track will be

rendered;

• Create earth::Track objects that use those visualisations, and store them

for later use;

• Add each Track to the earth::Surface3D (which will use a pointer to the

original Track objects);

• The Tracks can then be updated at run time using the variable and

attribute functions on the Track objects.

Commercial in Confidence

 MapLink 3D Earth SDK

© 2021 Envitia Ltd 205 AUM1107

 Commercial in Confidence

See CEarthSampleDoc::initialiseTracks, CEarthSampleView::addTracks, and

CEarthSampleDoc::updateTracks for usage examples.

18.2.5 Managing Geometry

To display geometry, the user must first configure a Style. This concept is similar to

‘feature rendering’ within the Core SDK but provides a distinctly different set of

rendering parameters.

• A style is defined by an instance of the earth::geometry::Style class;

• Unlike the Core SDK a default style is provided. This is the initial state of

the Style class, and will be used if a geometry references an

unknown/invalid style on the surface;

• Once configured the user must pass the style to Surface3D::setStyle.

The set of styles may be configured independently on multiple surfaces. If a geometry

instance is present in multiple surfaces it will be rendered according to the style on each

one.

Once a style is configured geometry may be created by:

• Creating an instance of earth::Geometry, such as a Polygon or Polyline;

• Defining the primitive’s coordinates;

• Setting the styleName parameter of the Geometry to the name of a style;

• Passing the Geometry instance to Surface3D::addGeometry.

Once added to the surface the geometry may be updated at any time, and the scene will

be refreshed automatically to reflect this.

Note that very frequent updates to the primitive or to the styles may cause a

performance loss, so these should be kept to a minimum. The CreatePolygonInteraction

and CreatePolylineInteraction classes within the sample demonstrate a technique to

reduce this impact by performing most of the geometry creation with a much simpler

style (e.g. one that has less detailed draping and tessellation options).

As with Tracks the application is responsible for memory management of Geometry

instances.

Commercial in Confidence

 Editor SDK

© 2021 Envitia Ltd 206 AUM1107

 Commercial in Confidence

19 Editor SDK

The Editor SDK provides an easy way for a MapLink Pro application to support the

creation, management and update of vector overlays. It is used in many applications

ranging from complex CAD-style editing for property Title Deeds to complex mission

planning tactical graphics.

19.1 Library Usage and Configuration

As with the MapLink Pro Core SDK, the Editor SDK comes in 2 different flavours. It

should be noted that the library to be linked with should be determined by the Core SDK

library that you are using within your application. For example, if you are using the

Release mode, DLL version of the Core SDK (MapLink.lib/MapLink64.lib) then you must

also use the equivalent Editor SDK library (MapLinkEDT.lib/MapLinkEDT64.lib).

MapLinkEDT.lib or MapLinkEDT64.lib

Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink CoreSDK library
MapLink.lib

Refer to the document "MapLink Pro:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.

MapLinkEDTd.lib or MapLinkED64dT.lib
Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink CoreSDK library
MapLinkd.lib

No redistributable run-time available.

KEYED : Development machines only.

19.2 Concepts

The Editor SDK adds two new key concepts to those you will already be familiar with:

• Operations

• Select List

• The primary application interface goes through two principle classes:

• Editor manager – TSLEditor for instructions from the application to

MapLink

• Editor request handler – TSLEditorRequest for requests from MapLink to

the application.

• Custom Operations allow an application to evolve and expand the

functionality of the SDK using two further main classes

• User operation – TSLNUserOperation

• Operation request handler – TSLNUserOperationRequest

Commercial in Confidence

 Editor SDK

© 2021 Envitia Ltd 207 AUM1107

 Commercial in Confidence

19.2.1 Operation

In the Editor SDK, an operation encapsulates all functionality required to implement a

user interaction. There are four main styles of operation:

1. One-shot style – e.g. “Delete all selected entities”

2. Creation style – e.g. “Allow me to draw a polygon”. These operations will

automatically clear the select list when triggered and are expected to add the

created object to the select list.

3. Manipulation style – e.g. “Allow me move points of selected entities”. These

operations will automatically deactivate and current operations and are expected

to manipulate the select list or the entities referenced by it.

4. Attribute style – e.g. “Set the fill colour of a selected polygons to red”. These

operations are expected to be transitory and perform simple, non-destructive

changes to the entities on the select list. They leave any existing operation as

active. If they are invoked with nothing on the select list, then most attribute

operations will be expected to store ‘default’ values. They are often invoked by

‘creation’ options to apply current styling to the newly created objects.

They can response to events passed by the application and make requests for user input

or application action where necessary. In general, the standard operations follow the

“Select objects, then select action to perform on the objects” paradigm.

19.2.2 Select List

The Select List is an ordered list of entities that the user has clicked on. In addition to

the actual fact of selection, the Select List also includes information about whether a

specific vertex or point on the entity was selected.

It is managed by the Editor SDK, but used, updated, and manipulated by individual

operations.

Commercial in Confidence

 Editor SDK

© 2021 Envitia Ltd 208 AUM1107

 Commercial in Confidence

19.3 Editor Application Architecture

MapLink has unparalleled flexibility amongst GIS components. Virtually all MapLink Pro

SDK classes are passive in that they:

• Do not create windows

• Do not force a main loop on the application

• Do not trap events

• Do not generate events

Exception: Some Editor SDK operations will redraw the window, unless the application

has provided a mechanism to override that behaviour and redraw the window on the

SDKs behalf.

This design increases portability and flexibility, but your application needs to pass on key

events to the SDK, including initialisation, resize, paint and mouse events.

19.3.1 Limitations and Interaction with other MapLink Pro SDKs

You can only have one TSLEditor instance per application, to which you must add the

operations you want available. The TSLEditor can only be attached to one

TSLDrawingSurface at a time, although it can swap to another.

The Editor SDK will only edit vector TMF Geometry stored in a TSLStandardDataLayer

and will assume that it should create, select and modify data in the topmost editable,

selectable TSLStandardDataLayer:

• TSLPropertyDetect is true on the Drawing Surface data layer properties.

• TSLProperySelect is true on the Drawing Surface data layer properties.

Before changing or storing contents outside of the editor (e.g. via load or save), you

must call reset to clear select list, which will remove highlighting and any held

references. After changing the contents of the editable layer outside of the editor, you

must call TSLEditor::dataChanged to reattach the editor to the edit layer.

19.4 User Interface Considerations

When deciding to integrate the Editor SDK into your application, you will need make

some key decisions about how your application will handle user interaction. For instance:

• Which operations are required or useful? Too many can lead to an

unnecessarily complex user interface.

• Standard / custom operations. Are the standard variants appropriate, or

do you need to provide additional functionality.

• Display of prompt messages and errors. How is this done? Typically, this

might be through status bar messages, but this may not be appropriate.

• Handling of user entry – dialogs and text. Some operations may need a

user to enter some text or make a choice from a number of options. How

should this happen?

• Highlighting and selection of entities. What style of highlighting and

selection is required? The Editor SDK provides two different standard

ways – one CAD-style, the other more like a traditional Windows drawing

Commercial in Confidence

 Editor SDK

© 2021 Envitia Ltd 209 AUM1107

 Commercial in Confidence

application. Both can be adapted for rendering styles and colours without

any code.

• Inter-relationship with view handling – zoom/pan/grab etc – This is

especially important when using Context Menus. The standard Interaction

Modes can be used for a simple integrated solution.

• Full feedback and GUI selection of entities. The standard operations allow

a user to select entities by clicking on them. By using the feedback

handlers, an application can maintain a separately displayed list of current

objects and use that to interact with the select list.

• Configuration of rendering attributes. Does your application work with a

limited set of rendering styles and colours for a particular domain, or does

it need full user control over styling?

• Advanced point handling – point/object snapping, constraints etc

19.5 Configuration

In addition to the standard Core SDK styling configuration files, the Editor SDK requires

two more files:

• A configuration file specifying setup information

• A messages file for text strings passed to the application

These can easily be customised or swapped at start up to support other locales.

19.5.1 Configuration File Format

Look at the example configuration file for the one of the Editor SDK samples. For

example, <MAPLINK_HOME>samples\NT\SimpleEditorInteraction\editor.ini

The only section required by the TSLEditor is the [editor] section. This may be

combined with other sections for an application. All the settings under the editor section

have documentation to describe what they do.

Adjacent to the sample’s configuration file is its messages file, tms_msg.msg. The first

section lists the categories of the entries. Only two are used currently TMS_MSG_INFO

and TMS_MSG_ERROR. The second section lists the entries in the format: Number,

Identifier, Category and Message Text.

 e.g. 220 AP_EXTRUSION TMS_MSG_INFO Select start of section to extrude

Use the ‘msg2header’ utility to generate a header file from this, which can then user

used by the application to inform the Editor SDK which prompts and errors to display.

This separation of messages and code allows an application to select from several

localised message files if necessary.

19.6 Editor Management

The TSLEditor class provides the application with its main interface into the Editor SDK.

It provides several types of method for the application to control the Editor and its

operations.

Some methods are for configuration:

• initialise

• addCustomHighlight

Commercial in Confidence

 Editor SDK

© 2021 Envitia Ltd 210 AUM1107

 Commercial in Confidence

• enableGlobalUndo

Some methods are event drivers:

• activate

• locator

Some methods are queries for user interface feedback:

• activatePossible

• querySelectedAttributes

The TSLEditor instance is attached to a TSLDrawingSurface using the ‘attach’ method

and edits objects in the top-most, selectable, detectable TSLStandardDataLayer.

19.7 User Interface Handling

The TSLEditorRequest class allows the application to control its own user interface. An

application must provide a derivation of this class to the TSLEditor. All Editor SDK

classes and operations use these handler functions to request that the application supply

some information to, or request information from the user. This covers:

• Entry of some text

• Display of prompt messages and error strings

• Choose from a set of options

• Event feedback – redraw, cursor movement

• Cursor style changes

19.8 Activating Operations

Operations are activated by name, which is defined in the operation’s class

documentation. Please refer to the MapLink API documentation. Typically, the names is

all lower case.

m_editor->activate(“polygon”);

An application can pass in an object as user data for an operation. The operation’s class

documentation will note where this is necessary and the type that is required. Any user

data is stored by the current operation and may be queried – although some operations

don’t permit this.

TSLRenderingAttributes ra ; // Now configure rendering attributes

M_editor->activate(“renderingattributes”, &ra);

19.9 Integrating the Editor SDK from First Principles

Starting with a copy of the MFC Sample which only displays a map, we will now add an

Editor SDK from scratch, using a separate dialog to display feedback and messages. In

your own application, this could perhaps be in a status bar, as per the more complex

Editor samples.

NOTE: The next section proves a simpler way to integrate the Editor SDK for an

application that already use the standard TSLInteractionModes, such as an instance of

the Simple Interaction sample, or an application created using the Visual Studio wizard.

Commercial in Confidence

 Editor SDK

© 2021 Envitia Ltd 211 AUM1107

 Commercial in Confidence

19.9.1 Set up the application configuration

Add the Editor SDK libraries to the relevant project linker settings. Add an include to

“stdafx.h” for “MapLinkEDT.h” (just after the existing “MapLink.h) which will pull in all of

the relevant Editor SDK classes and types.

In the sample Doc class, instantiate a TSLStandardDataLayer once a map is loaded.

Add/remove the data layer to the drawing surface when the map data layer is

added/removed. Set the TSLPropertyDetect and TSLPropertySelect properties on the

data layer to both be true.

19.9.2 Provide prompt capability for the Editor SDK

Create a small dialog to display the editor feedback messages for operation prompts and

select list count. In your application main window, instantiate one of the feedback

dialogs.

Create a new class and derive it from TSLEditorRequest. In its constructor, pass the

instance of the feedback dialog and override the following methods:

• TSLEditorRequest::displayPrompt – Use the parameter to set the text for

the prompt label in the feedback dialog.

• TSLEditorRequest::displayError - Show a message box containing the

error message.

• TSLEditorRequest::onSelectionChanged - Set the text for the select list

label.

19.9.3 Initialise the Editor

Construct an instance of the TSLEditor, passing your TSLEditorRquest derived class. Call

initialise on the TSLEditor instance, passing the full path to the .ini file.

Call attach on the TSLEditor instance, passing the drawingsurface.

Call dataChanged on the TSLEditor instance, to attach to the edit layer.

Add all standard operation to the editor – TSLAllOperations.add(editor).

Call reset to on the TSLEditor to start the default operation.

Activate the rendering attributes operation, passing the name “renderingattributes” and

a populated TSLRenderingAttributes instance to define the initial rendering attributes.

19.9.4 Capturing and processing user interactions

Create a new derivative of the TSLViewMode class for interacting with the Editor –

TSLViewModeEditor. In the new view mode, override Button and Mouse methods and

pass the events on to the TSLEditor::locator method.

Note - positions must be converted from DUs to TMCs using the drawingSurace

DUToTMC method.

Note - You will need to change the signature of the basic onMouseMove method to

provide the currently pressed mouse buttons, since some operations required those.

19.9.5 Invoking Operations

Add a toolbar button to activate the editor mode, alongside the ‘pan’, ’zoom’ modes.

Commercial in Confidence

 Editor SDK

© 2021 Envitia Ltd 212 AUM1107

 Commercial in Confidence

Add ‘polygon’ and ‘delete’ toolbar buttons and in event handlers for those, call activate

on the TSLEditor instance, passing the appropriate operation name.

19.10 Integrating the Editor SDK from using Standard Interaction Modes

Note: The ‘Simple Editor Interaction’ sample provides an example of these completed

steps, with the additional provision of a Context Menu.

Start with a copy of the Simple Interaction sample of the Visual Studio generated sample

application. Do the same steps as described in Sections 19.9.1 but also add

‘MapLinkEDTIMode.h’ as a required header file.

19.10.1 Initialise the Editor

In the same class that has provided the ‘TSLInteractionModeRequest’ overrides for the

standard Interaction Modes, also derive from TSLInteractionModeEditorRequest –

typically the View. This provides a single point of interface.

Provide overrides for displayError, displayPrompt and onSelectionChanged as per Section

19.9.3.

Where the standard Interaction Modes are created and added to the mode manager,

(typically the View::OnInitialUpdate), also instantiate an instance of

TSLInteractionModeEdit, passing in the path to the initialisation file and provide the

TSLInteractionModeEditorRequest derivative. Add the new mode to the manager as the

default mode.

19.10.2 Invoking Operations

Add a toolbar button to activate the editor mode, alongside the ‘pan’, ’zoom’ modes. Add

‘polygon’ and ‘delete’ toolbar buttons and in event handlers for those, call activate on the

TSLEditor instance that can be retrieved from the edit interaction mode, passing the

appropriate operation name:

m_editMode->editor()->activate("polygon", 0) ;

19.11 Custom User Operations

The TSLUserOperation abstract class allows the application to:

• Create brand new operations;

• Override or extent existing operations.

Methods are triggered automatically by the Editor SDK in response to events or

application queries.

19.11.1 Types of Custom User Operation

User operations can be one of several types:

• Simple – add additional functionality on to an existing operation. e.g. Add

extra data to newly created primitives;

• Duplicate newly created primitive in external data store;

• Perform additional validation;

• Aliased – create variants of existing operations. Allows original to be kept

too;

Commercial in Confidence

 Editor SDK

© 2021 Envitia Ltd 213 AUM1107

 Commercial in Confidence

• Custom – brand new operations, unrelated to existing operations. Could be

similar, but with different interactions.

19.11.2 Custom User Operation Event Handlers

User operations will be called by the TSLEditor in response to user or application

triggered events. They typically return the ID of a message that should be displayed as a

prompt – specifically when a state machine driving the interaction may have changed.

Return 0 to leave the prompt unchanged.

Overridable methods include:

• activate – Called when operation is activated, passed the input data.

• activatePossible – Called to check whether it’s possible to activate this

operation. E.G. The delete operation can only be activated when there is

something on the select list.

• backup – Called to step back one step in the interaction. E.G. Go back

one point when drawing a polygon.

• backupPossible – Called to check whether it is possible to go back!

• constraintChanged – Called when vertical/horizontal/equal/unequal

constraint changes – This can affect echo.

• deactivate – Called when the operation is deactivated, usually when

another is made active.

• dialogEntered – Called when the user responds to a dialog entry request.

• done – Called when the user indicates completion - usually by a right

mouse button press.

• locator – Called when mouse event is passed to the editor.

• reactivate – Called to re-activate the already active operation, possibly

with new activation data or to reset it back to its initial state.

• requestHandler – Called upon initialisation to attach operation to

handler.

• resetUndoBuffer – Called to indicate that the any undo buffer should be

cleared as another operation has since been invoked and undo data no

longer required.

• textEntered – Called when user responds to text entry request via

handler.

• undo – Called when user asks to undo previous action.

• undoPossible – Called to see whether it’s possible to undo last action.

19.11.3 Custom Operation Support

The TSLUserOperationRequest class provides custom operations with their main interface

into the Editor SDK. A custom operation should prefer to use this mechanism to interact

with the application, in order to ensure that the Editor SDK remains in a known state.

The methods on this class allow the operation to:

• Query and control the select list;

Commercial in Confidence

 Editor SDK

© 2021 Envitia Ltd 214 AUM1107

 Commercial in Confidence

• Pass feedback to the application or the user;

• Request user input;

• Configure dynamic (rubber band) echo;

• Configure static (point/line) echo;

• Access Editor configuration information.

19.11.3.1 Custom Operation Echo Styles

Many custom operations require echo of some description. These would be set by an

operation calling ‘setDynamicEcho’ and/or ‘setFixedEcho’ where relevant on the

interaction. Note that most dynamic echo styles will automatically update position based

on the mouse move and current constraints – an operation does not need to update the

echo itself in response to the mouse move event.

There are several types available, each in different styles:

• Dynamic Echo;

• Rubber band style, often (partially) moving with the cursor;

• Segments;

• Rectangles;

• Scaling rectangles;

• Corners;

• Spatial calculations – ray, parallel;

• Constraints automatically applied where relevant;

• Primitive echo;

• Points or polylines.

The styles and rendering attributes used to draw these are defined in the .INI file. Note

that echo styles are reset between operations.

19.12 Advanced Editor SDK Topics

The following topics will be covered in more detail in a future release but see the API

documentation for more information.

Custom feedback handler - Everything you ever wanted to know about what the Editor

SDK and operations are doing. Must provide feedback in custom operations.

• GUI integration - activatePossible, backupPossible and undoPossible;

• querySelectedAttributes;

• Feedback handler for selection trees;

• Custom rendering attribute panels;

• Windows highlighting, selection and movement modes;

• Custom highlighting – Total control over highlighting.

Commercial in Confidence

 Geopackage SDK

© 2021 Envitia Ltd 215 AUM1107

 Commercial in Confidence

20 Geopackage SDK

The GeoPackage SDK allows a developer to read, analyse and display GeoPackage data

files.

Please contact support@envitia.com for additional information on the

implementation.

20.1 Library Usage and Configuration

As with the MapLink Core SDK, the GeoPackage SDK comes in 2 different flavours. It

should be noted that the library to be linked with should be determined by the Core SDK

library that you are using within your application. For example, if you are using the

Release mode, DLL version of the Core SDK (MapLink.lib/MapLink64.lib) then you must

also use the equivalent GeoPackage SDK library

(MapLinkGeoPackage.lib/MapLinkGeoPackage64.lib).

MapLinkGeoPackage.lib or
MapLinkGeoPackage64.lib
Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink CoreSDK library
MapLink.lib

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

MapLinkGeoPackaged.lib or
MapLinkGeoPackage64d.lib
Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink CoreSDK library
MapLinkd.lib

No redistributable run-time available.

KEYED : Development machines only.

http://www.geopackage.org/
http://www.geopackage.org/
mailto:support@envitia.com

Commercial in Confidence

 OWSContext SDK

© 2021 Envitia Ltd 216 AUM1107

 Commercial in Confidence

21 OWSContext SDK

The OWSContext SDK allows a User to read, analyse and display OWSContext

documents data files.

Please contact support@envitia.com for additional information on the

implementation.

http://www.owscontext.org/
http://www.owscontext.org/
mailto:support@envitia.com

Commercial in Confidence

 MapLink OGC Services SDK

© 2021 Envitia Ltd 217 AUM1107

 Commercial in Confidence

22 MapLink OGC Services SDK

The MapLink OGC Services library was introduced in MapLink 6.0 and superseded the

previously used frontend API of the MapLink Web Map Service (WMS). It was introduced

to allow additional OGC Service implementations to be created and used through the

same interface.

The SDK offers interfaces in C++, .NET and JAVA for the construction, configuration and

use of the MapLink OGC Services. Currently the following services are offered by

MapLink:

• The MapLink Web Map Service (WMS)

• The MapLink Web Processing Service (WPS)

It is intended that future versions of MapLink will offer additional services

An OGC Services Implementation, such as the MapLink WMS, is loaded as a plug-in to

the MapLink OGC Services SDK at runtime.

The "MapLink OGC Services Deployment Guide" provides the most comprehensive

instructions on deploying and configuring all the MapLink OGC Services. This section is

intended to cover programming using the SDKs provided.

22.1 Library Usage and Configuration

The table below describes the pre-processor directives and link options that should be

set in the Project Properties for using the MapLink OGC Service C++ API. For X11

targets, refer to the product Release Notes.

MapLinkOGCServices.lib or
MapLinkOGCServices64.lib

Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.
KEYED: Deployment machines only.

MapLinkOGCServicesd.lib or
MapLinkOGCServices64d.lib
Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.
KEYED: Development machines only.

22.2 The MapLink WMS

22.2.1 Introduction

The MapLink Web Map Service (WMS) is used to serve up user defined map data in a

standardised format for use by client software across a network. It conforms to the

‘Open Geospatial Consortium’ (OGC) WMS standard version 1.3.0 but is also backwards

compatible with all prior ratified versions.

Envitia supplies two types of installation of this component; a developer and a

deployment version. The developer installation includes the debug versions of the WMS

libraries to allow users to create their own plug-ins to serve custom data. Whereas the

deployment installation includes the release versions of the libraries for deploying a

MapLink WMS using the pre-built or user created plug-ins.

Commercial in Confidence

 MapLink OGC Services SDK

© 2021 Envitia Ltd 218 AUM1107

 Commercial in Confidence

The "MapLink OGC Services Deployment Guide" provides instructions on how to deploy

and configure your MapLink WMS on a variety of proprietary web servers. This section of

the guide will cover the basic steps for creating your own plug-in to serve your own data.

22.2.2 Philosophy

As outlined in the OGC Services Deployment Guide, a WMS plug-in supplies the MapLink

WMS with one or more data sources through its relationships to spatial data. A data

source is the term hereafter used to refer to a child layer of the root layer in the WMS

capabilities of the service. This is defined through a named combination of plug-in type

and spatial data.

A single plug-in could potentially be used to serve the same spatial data in two different

ways, thus creating two separate data sources. In practice, however, it is usually the

case that a plug-in will be used to create separate data sources only when using

different spatial data.

A good example of the use of a plug-in is the BasicMapPlugin supplied with the MapLink

WMS. For spatial data it takes MapLink Maps, creating a different data source for each

map.

TSLOGCService (of type WMS)

WMS

Plug-in

MapLink
Map

Spatial
Database

Custom
Data

Spatial Data

Data

Sources

WMS Plug-ins

Request
s

Web Server

WMS
Plug-in

Commercial in Confidence

 MapLink OGC Services SDK

© 2021 Envitia Ltd 219 AUM1107

 Commercial in Confidence

The above diagram shows a set of example relationships between plug-ins, their spatial

data and the data sources they provide.

22.2.3 Configuration

When the MapLink WMS starts up, it loads a single global configuration file that contains

details of its root WMS capabilities as well as the data sources it is to load. The exact

contents of this file are described in the OGC Services Deployment Guide, but this

section will cover what details are passed to the plug-in.

Each data source is configured with three string entries in this global file; the plug-in

name, the spatial data string and the data source configuration string. The MapLink WMS

ignores the content of the latter two and only concerns itself with the former. It attempts

to load the library of the plug-in name, appending '64' to the name when running in 64-

bit mode and/or ‘d’ in debug, then queries the library for its createDataSource function.

If it fails to find this function, then the service will abort its loading and queries to the

service will return a WMS exception report. If it’s successful, it will pass the spatial data

and data source configuration strings to this create function.

22.2.4 Library Usage and Configuration

Unlike most MapLink SDKs, when creating a custom WMS plug-in, the only library that

must be linked against is the core WMS library. The table below describes the pre-

processor directives and link options that should be set in the Project Properties for using

the MapLink WMS SDK. For X11 targets, refer to the product Release Notes.

MapLinkWMS.lib or MapLinkWMS64.lib

 Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.
KEYED: Deployment machines only.

MapLinkWMSd.lib or MapLinkWMS64d.lib
Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.
KEYED: Development machines only.

22.2.5 Plug-In Writing

22.2.5.1 Basic Usage

As mentioned in the previous section, all WMS plug-ins must implement and export the

createDataSource function for use by the MapLink WMS. An example of this is shown

below.

Commercial in Confidence

 MapLink OGC Services SDK

© 2021 Envitia Ltd 220 AUM1107

 Commercial in Confidence

The user-created plug-in should return an implementation of the abstract

TSLWMSPluginDataSource class from the createDataSource function. The two abstract

methods are the getLayers and getMap functions which must be implemented.

Optionally the derived class may override the getFeatureInfo function if the plug-in is

to support ‘GetFeatureInfo’ WMS requests.

The getLayers function is called immediately after the data source is created to build up

the capabilities of the service. The data source should create and populate at least a root

TSLWMSAvailableLayer object and potential sub layer objects. The MapLink WMS will

internally handle how these objects are serialised to XML during the WMS

‘GetCapabilities’ requests. The TSLWMSRegister object passed to the getLayers

function is for use when overriding the getFeatureInfo function and is discussed later

in this section. The TSLWMSRequest object passed to the getLayers function is for

advanced usages and is discussed in the class documentation.

The getMap function is called whenever a WMS ‘GetMap’ request is made to the service.

The data source implementation should examine the TSLWMSGetMapRequest object and

populate the TSLWMSGetMapResponse object with its response. Currently the MapLink

WMS only supports raster responses to ‘GetMap’ requests, but in future releases it is

intended to additionally support vector responses.

For raster ‘GetMap’ requests, the response object should be cast up to the platform

specific raster response object using the isRasterResponseNT and

isRasterResponseX11 as shown in the following example. The user can then either

access the raster resource that this object represents or request a MapLink drawing

surface based on the resource. Users should not create drawing surfaces independently

due to thread safety issues discussed later in this section.

In the following example a pseudo implementation of these functions is provided.

#include "tslwmsplugindllspec.h"

#include "mydatasource.h"

extern "C"

{

 TSLWMSPluginDataSource* createDataSource(const char* spatialData,

 const char* dataSourceConfig)

 {

 try

 {

 return new MyDataSource(spatialData, dataSourceConfig);

 }

 catch (...)

 {

 return NULL;

 }

 }

}

Commercial in Confidence

 MapLink OGC Services SDK

© 2021 Envitia Ltd 221 AUM1107

 Commercial in Confidence

22.2.5.2 ‘GetFeatureInfo’ Usage

If any of the layers returned from the getLayers query to the data source have their

‘Queryable’ flag set to true, then the MapLink WMS expects the data source to provide

an overridden implementation of the getFeatureInfo function. Failure to do so will lead

to an exception report being generated if a service user performs a WMS

‘GetFeatureInfo’ request to that layer.

Unlike ‘GetMap’ requests, the MapLink WMS does not define any limitation on the type of

response that a custom plug-in returns from a ‘GetFeatureInfo’ request. The only

restriction it puts in place is that ‘GetFeatureInfo’ requests cannot query layers, in a

single request, from multiple data sources. This is due to the MapLink WMS having no

understanding of the response and is therefore not able to merge multiple responses

together as it does for ‘GetMap’ responses.

TSLWMSAvailableLayer * MyDataSource::getLayers (TSLWMSRegister *wmsRegister,

 const TSLWMSRequest* r)

{

 if (!m_isConfigurationValid)

 {

 TSLWMSExceptionReport * report = new TSLWMSExceptionReport();

 TSLWMSCustomException * exception = new

 TSLWMSCustomException("MyDataSource not configured correctly");

 report->addException(exception);

 report->throwException();

 }

 TSLWMSAvailableLayer * rootMapLayer = new TSLWMSAvailableLayer();

 //TODO: Build up layer tree

 return rootMapLayer;

}

 bool MyDataSource::getMap (TSLWMSGetMapResponse *response,

 const TSLWMSGetMapRequest *request)

{

 if (!m_isConfigurationValid)

 { //TODO: Throw exception report }

#ifdef WINNT

 TSLWMSGetMapRasterResponseNT * res =

 TSLWMSGetMapRasterResponseNT::isRasterResponseNT(response);

#else

 TSLWMSGetMapRasterResponseX11 * res =

 TSLWMSGetMapRasterResponseX11::isRasterResponseX11(response);

#endif

 if (!res)

 {

 //TODO: Throw exception report

 return false;

 }

#ifdef WINNT

 //TODO: Draw to response using either res->getHDC()

 //or res->getDrawingSurface()

#else

 //The implementation uses the DISPLAY environment variable for the

 //connection information.

 //Supported Visuals: True Color 24,16 and 8 bit depth, 8 bit Psuedo

 //Color.

 //TODO: Draw to response using res->getDrawable/Display/Screen/

 //Colourmap/Visual() or res->getDrawingSurface()

#endif

 return true;

}

Commercial in Confidence

 MapLink OGC Services SDK

© 2021 Envitia Ltd 222 AUM1107

 Commercial in Confidence

Plug-ins that wish to serve ‘GetFeatureInfo’ requests must register their supported

output formats with the TSLWMSRegister object passed to the getLayers function at

service start-up. Registered output formats will appear in the service level metadata

returned from ‘GetCapabilities’ requests.

The getFeatureInfo method will be passed a TSLWMSGetFeatureInfoResponse object

which it should populate with the raw data of the response.

22.3 The MapLink WPS

22.3.1 Introduction

A Web Processing Service (WPS) provides a set of ‘Processes’, usually geospatial in

nature, which take zero or more inputs and return one or more outputs. The WPS

standard describes a process as ‘any algorithm, calculation or model that operates on

spatially referenced data’, although its interface is not limited to geospatial operations.

The WPS standard also provides an interface which will describe all processes WPS

service.

Envitia's implementation of the WPS standard allows developers to build WPS plug-ins,

each which can provide one or more WPS Processes. Each Process is defined as a class

which inherits the ‘MapLink WPS Data Source’ class. The MapLink WPS Data Source class

provides low level functionality which will interface with Envitia’s WPS, allowing for the

developer to concentrate on implementing the process itself.

Envitia supplies two types of installation of this component; a developer and a

deployment version. The developer installation includes the debug versions of the WPS

libraries, whereas the deployment installation includes the release versions of the

libraries.

The ‘MapLink OGC Services Deployment Guide’ provides instructions on how to deploy

and configure your MapLink WPS on a variety of web servers. This section of the guide

will cover the basic steps for creating your own plug-in to serve your own data.

22.3.2 Library Usage and Project Configuration

When creating a custom WPS plug-in the table below describes the pre-processor

directives and link options that should be set in the Project Properties for using the

MapLink WPS SDK.

MapLinkWPS.lib or MapLinkWPS64.lib
Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.

Your application must also link:

• MapLink.lib/MapLink64.lib

• MapLinkwps.lib/MapLinkwps64.lib

• MapLinkows.lib /MapLinkows64.lib

MapLinkWPSd.lib or MapLinkWPS64d.lib
Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.

Your application must also link:

• MapLinkd.lib/MapLink64d.lib

• MapLinkwpsd.lib/MapLinkwps64d.lib

• MapLinkowsd.lib /MapLinkows64d.lib

Commercial in Confidence

 MapLink OGC Services SDK

© 2021 Envitia Ltd 223 AUM1107

 Commercial in Confidence

22.3.3 Configuration

The WPS configuration file is used to define what WPS plugins exist. The contents of

WPS configuration file is detailed in the OGC Services Deployment Guide. Each plugin is

declared with three string entries:

• plug-in

• data path

• config path

The ‘plugin’ value defines the name of the DLL library to dynamically load, appending

'64' to the name when running in 64-bit mode and/or ‘d’ if running in debug.

The ‘data path’ and ‘config path’ are values that are passed to the plugin on start-up,

allowing for customisation at a deployment level.

22.3.4 WPS Start Sequence

When the MapLink WPS starts up, it loads the WPS configuration file to determine which

plugins to load. All WPS plugins must located in the ‘plugins’ sub folder of the

appropriate bin folder.

Once found, the WPS service will attempt to find the DLL’s createAllDataSources, or

createDataSource function. If one of the functions is found in the DLL, the WPS will call

this function and pass the ‘data path’ and ‘config path’ values found in the configuration

file to it. If both functions are found, the createAllDataSources function will take

precedence.

It is then the plugin’s responsibility to provide class which inherits the

‘TSLWPSPluginDataSource’ class for each process the plugin is to provide.

22.3.5 Plug-In Implementation

A WPS Plugin provides one or more Plugin Data Sources back to the WPS service

when it starts up. Each Plugin Data Source being an implementation of the abstract

TSLWPSPluginDataSource class. The WPS Plugin will achieve this by providing one of

two functions; createDataSource or createAllDataSources function.

The createDataSource function can return a single Data Source.

The createAllDataSources function can pass back several Data Sources.

#include "tslwpsplugindllspec.h"

#include "mydatasource.h"

extern "C"

{

 TSLWPSPluginDataSource* createDataSource(const char* dataLocation,

 const char* configurationLocation)

 {

 try

 {

 return new MyDataSource(dataLocation, configurationLocation);

 }

 catch (...)

 {

 return NULL;

 }

 }

}

Commercial in Confidence

 MapLink OGC Services SDK

© 2021 Envitia Ltd 224 AUM1107

 Commercial in Confidence

22.3.6 Plugin Data Source Implementation

The two abstract methods are the describeProcess and executeProcess functions

which must be implemented.

The describeProcess function is called immediately after the data source is created to

build up the capabilities of the service and the process's description. The data source

should create and populate a TSLWPSProcessDescriptionType object, describing what

the process does, what inputs it takes and the type and format of the outputs that it can

produce. The MapLink WPS will internally handle how these objects are serialised to XML

during the WPS ‘GetCapabilities’ and ‘DescribeProcess’ requests.

The describeProcess function may be called multiple times if the server is configured

to supported multiple languages from the service configuration file. It is important that

the process description returned for each language is the same, except for the languages

used to describe them, or the process may not operate correctly.

One of the settings on the TSLWPSProcessDescriptionType object is called

‘storeSupported’ and is used denote whether the process supports asynchronous

requests and referenced outputs. The MapLink WPS supports both and the plug-in may

choose whether to permit their use, but another setting can affect whether the service

advertised their offering; whether a data store has been configured in the service

configuration. The data store configuration is detailed in the MapLink OGC Services

Deployment Guide, which should be referred to for more information.

The executeProcess function is called whenever a WPS ‘Execute’ request is made to the

service. The data source implementation should examine the TSLWPSExecuteRequest

object and return a populated TSLWPSExecuteResponse object with its response.

If the process advertised that it supports reference outputs and the request object

denotes that a supported output should be referenced, the storeHelper parameter will

point to a valid TSLWPSStoreHelper class instance. This class's createStoreItem should

be used to save an output and receive a URL through which the stored output can be

retrieved. This URL should then be included in a TSLWPSOutputReferenceType instance,

#include "tslwpsplugindllspec.h"

#include "mydatasourcea.h"

#include "mydatasourceb.h"

#include "mydatasourcec.h"

#include "mydatasourced.h"

extern "C"

{

 bool createAllDataSource(const char* dataLocation,

 const char* configurationLocation,

 TSLWPSDataSourceSet* dataSources)

 {

 try

 {

 dataSources->add(new MyDataSourceA(dataLocation, configurationLocation));

 dataSources->add(new MyDataSourceB(dataLocation, configurationLocation));

 dataSources->add(new MyDataSourceC(dataLocation, configurationLocation));

 dataSources->add(new MyDataSourceD(dataLocation, configurationLocation));

 }

 catch (...)

 {

 return false;

 }

 retrun true;

 }

}

Commercial in Confidence

 MapLink OGC Services SDK

© 2021 Envitia Ltd 225 AUM1107

 Commercial in Confidence

contained by a TSLWPSOutputDataType instance which should be added as a process

output to the response.

If the process advertised that it supports asynchronous requests and the request object

denotes that request of that type is being made, the plug-in need not concern itself with

completing the request in a background thread. Instead the MapLink WPS will handle

everything so that the plug-in need not handle the request any differently. The only

exception is when the plug-in advertises that it supports status updates. In this case the

progressSink parameter will be non-null and should be used to report the progress of

the plug-in so that when a status request is made by the called, it can be responded to

appropriately.

The following example code demonstrates the skeleton code for implementing a data

source's plug-in.

TSLWPSProcessDescriptionType* SampleWPSDataSource:: describeProcess
 (const char* language)
{

if (!m_isConfigurationValid)
{

 TSLOWSExceptionReport* er = new TSLOWSExceptionReport(1, 0, 0);
 TSLOWSException* ex = new TSLOWSException("NoApplicableCode",
 "SampleWPSDataSource has not configured correctly");
 er->addException(*ex);
 ex->destroy();
 er->throwException();

}

 TSLWPSProcessDescriptionType* desc = new TSLWPSProcessDescriptionType("1.0.0");
 desc->identifier().value("SampleProcess");

//TODO: Add inputs and output descriptions

return desc;

}

TSLWPSExecuteResponse* SampleWPSDataSource::executeProcess
 (const TSLWPSExecuteRequest *request,
 TSLWPSStoreHelper* storeHelper,
 TSLWPSProgressSink* progressSink)
{
 //TODO: Interrogate request for input values

 TSLWPSProcessDescriptionType * desc = describeProcess(request->language());
 TSLTimeType now;
 _time64(&now);
 TSLWPSStatusType* sts = new TSLWPSStatusType(now, "Succeeded");
 desc->identifier().value("SampleWPSDataSource");
 TSLWPSExecuteResponse * res = new TSLWPSExecuteResponse(*desc, *sts);
 desc->destroy();
 sts->destroy();

 //TODO: Add outputs

 return true;
}

Commercial in Confidence

 Spatial SDK

© 2021 Envitia Ltd 226 AUM1107

 Commercial in Confidence

23 Spatial SDK

The Spatial SDK introduces several additional spatial operations to the Editor SDK, such

as the Arc, Parallel and Ray drawing modes and the Follow mode specialised operation.

It also allows for the creation and merging of islands of change, which can be used to

apply updates to a map.

23.1 Library Usage and Configuration

As with the MapLink Core SDK, the Spatial SDK comes in 2 different flavours. It should

be noted that the library to be linked with should be determined by the Core SDK library

that you are using within your application. For example, if you are using the Release

mode, DLL version of the Core SDK (MapLink.lib/MapLink64.lib) then you must also use

the equivalent Spatial SDK library (LandLink.lib/LandLink64.lib).

LandLink.lib or LandLink64.lib
Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink CoreSDK library
MapLink.lib

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

LandLinkd.lib or LandLink64d.lib
Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink CoreSDK library
MapLinkd.lib

No redistributable run-time available.

KEYED : Development machines only.

23.2 Islands

23.2.1 What are Islands?

One of the principal uses of the Spatial SDK is to manage a series of updates to a vector

based map. These updates can be grouped into a set of contiguous groups of entities

called islands, each of which represents an independent area of change to the map.

23.2.2 Creating Islands

Islands are constructed via the two static createIslands methods available on the

TSLIsland class. Both methods take a TSLStandardDataLayer containing the data to be

converted into islands. Usually this layer will have been populated directly from a data

source (such as a set of OS MasterMap COU files) via the interoperability functions as

described in section 12.10. The act of creating the islands depopulates the source data

layer, so if this layer may be required later a clone should be passed to the

createIslands method instead of the original.

The first createIslands method performs a simple geometric merge of entities in the

source data layer to create islands of contiguous features. This does not modify the

geometry of any of the entities, it simply sorts them into contiguous regions.

The second createIslands method takes additional parameters that correspond to the

full path to a map containing a seamless layer (see section 12.11 for information on

Commercial in Confidence

 Spatial SDK

© 2021 Envitia Ltd 227 AUM1107

 Commercial in Confidence

seamless layers), with an associated entity reference handler for the map. This method

will replace ‘departed’ entities in the source data layer (entities which have a negative

feature ID) with the geometry of the original entity from the map. The departed status

and the TSLDataSet of the entity from the source data layer will be preserved on the

replaced entity. This may be useful in situations where having access to the geometry

for departed entities is required.

By their nature, departed entities often overlap with the entities that replace them.

However, they may not share any common edges and in this case the departed feature

will be placed into a different island than the feature(s) that cover the same geographical

location in order to prevent overlapping entities from being present in the island.

Should you wish these entities to be assigned to the same island that contains the

features that replace it, you should call the static sortDepartedFeatures method on the

TSLIslandSet populated by the call to createIslands. This method uses the geometry

of the original entity in the map that is being deleted to reassign departed entities in the

island set to the correct island.

23.2.3 Merging Islands

Multiple sets of updates to a map can be combined into a single update representing the

sum of all the updates via the mergeIslands methods available on the TSLIsland class.

There are two ways in which this can be done. The first performs a purely geometric

merge of all entities contained within the source TSLIslandSet. This can be used to

combine updates for different areas of a map into a single combined update for ingest

into the map. This version of mergeIslands does not handle multiple different versions

of the same entity being present in the source island set. If this happens, the resulting

merged island set will still contain multiple versions of the entity.

This case is handled by the other two versions of mergeIslands. The difference between

these two is that one allows merging of a new update contained within a

TSLStandardDataLayer with the existing island set, while the other only merges the

contents of the island set. The entities within the island set are merged so that only the

newest version of the entity remains. In the case of merging a modified and departed

entity the order in which the entities are encountered during the merge determines

which remains in the merged island set. Thus, to ensure that the merge operation leaves

the correct entity in the merged set, the following process should be followed:

1. Import the data corresponding to the first update into a
TSLStandardDataLayer

2. Create an initial island set from the data using createIslands

3. Import the data corresponding to the second update into a
TSLStandardDataLayer

4. Merge the initial island set and the data layer containing the second update

using mergeIslands

5. Repeat steps 3-4 for each of the remaining updates.

The following code example illustrates this process.

Commercial in Confidence

 Spatial SDK

© 2021 Envitia Ltd 228 AUM1107

 Commercial in Confidence

23.3 Additional Editor Operations

These will be discussed in much greater detail in a future version of this document.

Please contact Envitia support to see if there is a newer version available.

The intended topics are:

• Additional Spatial Operations

• Specialised Primitives

• Spatial Interactions

• Automatic Creation of Property Boundaries

// Load the map and initialise the seamless layer reference handler

TSLMapDataLayer *mapLayer = new TSLMapDataLayer();

mapLayer->loadData(pathToMap);

TSLSeamlessLayerConfig *config = new TSLSeamlessLayerConfig();

config->initialiseFromConfig(pathToConfig);

TSLSLMEntityRefHandlerFile *refHandler = new

TSLSLMEntityRefHandlerFile(*config);

TSLStandardDataLayer *initialUpdate = new TSLStandardDataLayer();

// Import the initial update data

TSLUtilityFunctions::importData(initialUpdate, …);

// Create the initial islands

TSLIslandSet *islandSet = new TSLIslandSet();

TSLIsland::createIslands(initialUpdate, *islandSet);

// Place departed entities into the same island as their replacement

// features

TSLIsland::sortDepartedFeatures(mapLayer, *refHandler, *islandSet);

TSLStandardDataLayer *couLayer = new TSLStandardDataLayer();

// Import the COU data

TSLUtilityFunctions::importData(couLayer, …);

// Merge the COU with the initial islands

TSLIslandMergeSet *mergedIslands = new TSLIslandMergeSet();

TSLIsland::mergeIslands(*islandSet, couLayer, pathToMap,

 *refHandler, *mergedIslands);

Commercial in Confidence

 GML SDK

© 2021 Envitia Ltd 229 AUM1107

 Commercial in Confidence

24 GML SDK

24.1 Library Usage and Configuration

As with most MapLink SDKs, the MapLink GML SDK comes in 2 flavours. It should be

noted that the library to be linked with should be determined by the Core SDK library

that you are using within your application. For example, if you are using the Release

mode, DLL version of the Core SDK (MapLink.lib/MapLink64.lib) then you must also use

the equivalent GML SDK library (MapLinkGML.lib/MapLinkGML.lib).

MapLinkGML.lib or MapLinkGML64.lib
Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink Core SDK library
MapLink.lib

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

MapLinkGMLd.lib or MapLinkGML64d.lib
Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink Core SDK library
MapLinkd.lib

No redistributable run-time available.

The MapLink GML SDK is runtime locked meaning that before it may be used on any

machine it must be unlocked programmatically. This is achieved using the

TSLUtilityFunctions class by calling the unlockSupport method, passing the

TSLKeyedGML enumeration value and the required unlock code. The unlock code can be

provided on request from Envitia Sales, subject to licensing.

24.2 Supported Capabilities

The MapLink GML SDK offers the ability to read and write GML Application Schemas and

corresponding instance data that either conforms to the ‘Geography Markup Language

(GML) Simple Features Profile’ level 0 (SF-0) or GML of an equivalent complexity, that

conforms to GML version 3.1.1.9

Non-SF-0 compliant instance data should use the ‘FeatureCollection’ top level

collection element.

If either the application schema or instance data is found to be incompatible during

ingest, the GML library will attempt to continue but will disregard those feature

definitions or feature instances that were not understood. The incompatible feature

definitions or feature instances can be returned to the caller as self-contained blocks of

XML if the relevant callback has been set.

A correctly defined GML feature definition should inherit from the

gml:AbstractFeatureType type, which defines several properties that all derivates

inherit. MapLink does not support the use of the base properties except for attribute

gml:id. Instead the gml:id is added to all feature definitions and will be named

‘gml:id’.

9 This section of the documentation, covering the use of the MapLink GML SDK, assumes a
reasonable understanding of both GML and the GML SF-0 profile. For further information on these
topics please refer to the OGC website (http://www.opengeospatial.org/)

http://www.opengeospatial.org/

Commercial in Confidence

 GML SDK

© 2021 Envitia Ltd 230 AUM1107

 Commercial in Confidence

MapLink requires that a GML instance data document only use a single coordinate

reference system (CRS) for all geometry data. If a document uses more than one CRS,

all uses of subsequent CRSs will cause the containing feature or features to be rejected.

24.3 GML Application Schemas

24.3.1 Schema Storage

The information read from a GML Application Schema, or used to write one, is

represented by a TSLGMLApplicationSchema object. This class gives access to such

properties as the version, target namespace, target namespace prefix and conforming

GML profile of the schema.

The TSLGMLApplicationSchema class also offers the ability save the feature definitions it

contains to a MapLink TSLStandardDataLayer object, through its applyToLayer method.

The saving of feature definitions conforms to the following steps:

• Each feature definition is mapped to a MapLink ‘feature’ and can therefore

be queried from the layer’s feature class list. The name of the MapLink

feature will be the same as the feature definition’s enclosing XML tag.

• Each geometry property of a feature definition is added as a ‘Source Info’

property of the MapLink feature class. The details of these ‘Source Info’

objects can be queried via the TSLFeatureClassList class’

getSourceInfoItem and getSourceInfoCount methods. ‘Source Info’

items can be added, removed or updated via the TSLStandardDataLayer

class’ addSourceInfo, deleteSourceInfo and updateSourceInfo

methods.

The ‘Source Info’ details are mapped in the following way to each geometric

feature property:

• The sourceName value corresponds to enclosing GML tags of the feature

property

• The sourceID value corresponds to the zero-based index of the feature

property. This allows the order of geometric and non-geometric feature

properties to be maintained or determined.

• The sourceDescription value corresponds to GML annotation associated with

the feature property, should one exist or wish to be set.

• The sourceType value corresponds to the type of GML geometry permitted.

The following table lists the supported abstract GML geometry types and their

corresponding values in the TSLGeometryType enumeration.

GML Type TSLGeometryType value

Point TSLGeometryTypeSymbol

Curve TSLGeometryTypePolyline

Surface TSLGeometryTypePolygon

Geometry TSLGeometryTypeEntity

MultiPoint TSLGeometryTypeMultiPoint

MultiCurve TSLGeometryTypeMultiPolyline

MultiSurface TSLGeometryTypeMultiPolygon

Commercial in Confidence

 GML SDK

© 2021 Envitia Ltd 231 AUM1107

 Commercial in Confidence

MultiGeometry TSLGeometryTypeEntitySet

• The minOccurs and maxOccurs values correspond to the multiplicity of the

property. Only positive values are valid, except for -1 for maxOccurs which is

used to denote there being no upper limit.

• Each non-geometry property of a feature definition is added to the

TSLDataHandler of the Standard Data Layer, as a ‘field definition’. The

ways of interacting and the information stored in this class have been

changed from previous versions of MapLink. MapLink 6.0 introduced a new

class, TSLFieldDefinition, which represents a single ‘field definition’ or,

in this case, a feature property definition.

A feature property definition maps to the fields of the TSLFieldDefinition class

in the following ways:

• The name value corresponds to the enclosing GML tags of the feature property.

• The type value corresponds to the GML SF-0 supported type of which the field

is defined as. The following table lists how the schema type supported by SF-0

is mapping to a TSLVariantType value

Schema Type TSLVariantType value

xsd:integer TSLVariantTypeLong

xsd:double TSLVariantTypeDouble

xsd:string TSLVariantTypeStr

xsd:date and xsd:dateTime10 TSLVariantTypeDateTime

xsd:boolean TSLVariantTypeBool

Extensions of xsd:base64Binary

and xsd:hexBinary

TSLVariantTypeBinary

xsd:anyURI TSLVariantTypeURI

xsd:ReferenceType TSLVariantTypeReference

Restrictions of gml:CodeType TSLVariantTypeCode

Restrictions of gml:MeasureType TSLVariantTypeMeasuremen

t

• The minOccurs and maxOccurs values correspond to the multiplicity of the

property. Only positive values are valid, except for -1 for maxOccurs which is

used to denote there being no upper limit.

• The maxExclusive, maxInclusive, minExclusive and minInclusive values

map to the schema facets of the same name. MapLink stores each value as a

TSLVariant, which are meant to hold the appropriate value. The variant type

should be the same as the field to which they belong.

• The length, minLength and maxLength values map to the schema facets of the

same name.

• The enumeration value may hold an array of objects of the same type as the

field to represent the enumeration schema facet.

10 All xsd:dates and xsd:dateTimes are converted to UTC time

mk:@MSITStore:C:/Temp/MapLinkAPI.chm::/rosefiles/cat421218fc015a/cat37a038e10247/class3ec0b8f703ca.htm

Commercial in Confidence

 GML SDK

© 2021 Envitia Ltd 232 AUM1107

 Commercial in Confidence

• The nillable value is used to denote if the GML property is nullable.

• The precision value may hold the fraction digits schema facet value.

• The encoding field is used in certain cases to hold additional information.

gml:CodeType types for instance store in this field their fixed or default

constraint value, should one be defined.

• The referenceTargetType value is used to hold the targetElement value from

a correctly formed gml:ReferenceType typed feature property declaration.

24.3.2 Schema Ingest

To load a GML Application Schema, first construct an instance of the

TSLGMLApplicationSchemaLoader class. The following can optionally be set on the

loader class before loading a schema:

• When loading a GML SF-0 compliant schema, it is possible to check that

the schema is correct through using the gmlSFValidationLevel option.

When turned on, this option will check the schema against the validation

rules defined in the GML Simple Features profile.

• The strictValidation option can be used to perform more rigorous

checks of the correctness of the schema. This is independent of any GML

or GML SF-0 checks.

• The unhandledFeatureDefinitionCallback methods can be used to

provide the loader with a callback that will be called whenever a feature

definition is encountered that is not supported.

• During schema loading, any dependant schemas are also loaded using the

URL referenced in the schema file. For cases when those addresses are no

longer correct or inaccessible, the urlLoaderCallback methods allow a

callback to be set that will redirect the loading address.

Finally the schema document may either the loaded from a file, URL or buffer using one

of the loadSchema methods. On successful loading of a schema document, an instance of

the TSLGMLApplicationSchema class will be returned.

24.3.3 Schema Creation and Export

To create a GML schema using the MapLink GML library, a

TSLGMLApplicationSchemaFactory is used. It should be provided with instances of the

TSLStandardDataLayer and TSLGMLApplicationSchemaCreationParameters classes.

The standard data layer should define the features that the schema should contain while

the parameters class will contain the namespace, namespace prefix, version and GML

profile to conform to. How to define GML features is described in section 24.3.1.

Optionally, a third parameter may be passed to the schema factory: a

TSLGMLPropertyMapping or TSLGMLPropertyMappingSet class instance. These can be

used to define additional feature properties whose values are determined by the

rendering attributes of MapLink geometry. This concept will be described in more detail

in section 24.4.1.1, but it is necessary to define those feature properties on the schema

for instance data to conform to its application schema.

On successful creation of a schema, an instance of the TSLGMLApplicationSchema class

is returned. Instances of this class can be used to write the schema to a file or buffer

Commercial in Confidence

 GML SDK

© 2021 Envitia Ltd 233 AUM1107

 Commercial in Confidence

using the TSLGMLApplicationSchemaWriter class. All schemas written by MapLink will

reference the opengis.net website for their dependent GML schemas.

Commercial in Confidence

 GML SDK

© 2021 Envitia Ltd 234 AUM1107

 Commercial in Confidence

24.4 GML Instance Data Ingest and Export

24.4.1 Instance Data Ingest and Storage

GML instance data can be loaded using MapLink via the TSLGMLInstanceDataLoader

class. The information read from a GML instance data document, or used to write one, is

stored in a MapLink TSLStandardDataLayer. The root TSLEntitySet will contain a child

entity that represents each GML feature instance. This means that every GML feature

instance read or written using MapLink must contain at least one geometric property.

As noted in section 24.2, all GML instance data either ingested or exported must be in a

single coordinate reference system. When ingesting data, the

TSLGMLInstanceDataLoader class will also return a TSLCoordinateSystem that

represents that CRS.

Exactly how the information is store depends upon a number of factors, but one of the

key ones is whether MapLink reads the instance data’s schema. This is due to MapLink

being capable of reading instance data without ever reading the schema; helpful if the

schema is unavailable or not compatible with MapLink. When reading without a schema,

MapLink treats all non-geometric properties as string values as it is not capable of

determining their type. The following sections therefore deal with how the instance data

is read and stored depending upon whether a schema was used to load it.

24.4.1.1 Schema Based Instance Data Ingest and Storage

The following rules define how the feature instance is stored as a MapLink entity:

• If the feature is defined as having more than one geometric property or

the multiplicity of the geometric property allows for zero or multiple

instances of the property, then the root MapLink entity that represents the

feature instance will be a TSLEntitySet. Each child entity within the root

entity set will have its new dataSourceID field set to denote the index of

the ‘Source Info’ item to which it belongs.

For instance, if a feature defines two geometric properties; property ‘A’ with a

multiplicity of 0..n and property ‘B’ with a multiplicity of 1..1. The instance data

document contains just two feature instances. The first instance of that feature

does not contain any ‘A’s but contains the required ‘B’ property. The second

instance of that feature contains two ‘A’s and a ‘B’. Therefore the standard data

layer’s entity set will contain two child entity sets; the first representing the first

feature instance and the second set representing the second instance. The first

child entity set, representing the first feature, will in turn contain one child entity

representing property ‘B’ and that entity will have its dataSourceID set to 2. The

second child entity set will in turn contain three child entities representing the two

‘A’ properties and one representing ‘B’. These child entities will have the following

dataSourceID values: 1, 1 and 2.

Alternatively, if the feature only defines a single geometric property with a

minOccurs and maxOccurs of 1, then the geometry for that property will be used

to represent the feature.

The reason for these two different schemes is to reduce the memory footprint of

an application loading large amounts of instance data in the more common,

latter, scenario.

• The TSLDataSet of the root entity representing the feature instance will be

populated with non-geometric properties’ values. By examining the

standard data layer’s TSLDataHandler, the two-character lookup key can

be determined to discover the value of a particular property’s value.

Commercial in Confidence

 GML SDK

© 2021 Envitia Ltd 235 AUM1107

 Commercial in Confidence

If a feature instance contains multiple instances of a property, then the dataset

will be populated with multiple values for that property.

If the property is nil, then the TSLVariant’s isNil property will be set to true.

Should a nilReason also be present, the variant will also contain a string value

containing the content of this attribute.

• Using either a TSLGMLPropertyMapping or TSLGMLPropertyMappingSet

class instance, it is however possible to map feature property values to the

rendering attributes and other properties of the root entity representing

the feature instance. Rather than a property’s value being added to the

TSLDataSet, it could for instance be set as the root entity’s name or entity

id.

The TSLGMLPropertyMapping class is used to setup a mapping for all types of

features in the same way. Whereas the TSLGMLPropertyMappingSet class can

setup a different mapping for each feature type.

The mapping object is not only used during reading of instance data but also

when writing it. The process is simple reversed with the values of feature

property’s being determined from the root entity representing the feature.

MapLink offers two ways in which instance data can be loaded with a schema; Pre-load

the schema using a TSLGMLApplicationSchemaLoader class or by loading the schema at

the same time from the location referenced in the instance data document. The benefit

of the former being that multiple instance data documents, that use the same schema,

can be loaded serially far quicker than via the latter.

24.4.1.2 Schemaless Instance Data Ingest and Storage

The following rules define how the feature instance is stored as a MapLink entity:

• In the same way as the schema-based storage, the root entity used to

represent the feature instance is determined by how many geometric

properties the feature ‘appears’ to contain. The problem being that

MapLink can only use the feature instances that the instance data

document contains to make this determination. This can lead to two

instance data documents, based upon the same original schema, being

loaded and stored differently.

As with the schema-based loading, if all seen instances of a feature always

contain a single geometry property, then that geometry object is used to

represent the feature in the MapLink standard data layer’s root entity set.

Otherwise a TSLEntitySet is used and all the geometric properties are added as

child entities.

• The TSLDataSet of the root entity representing the feature instance will

again be populated with non-geometric properties’ values. All of the

entries will be of type TSLVariantTypeStr type with the exception of

correctly formed restrictions of ’gml:MeasureType’ which will be formed

into TSLVariantTypeMeasurement types.

As all non-geometric properties are treated as strings, this means that only the

content of the property will be stored. Any XML attributes on the enclosing

property tags encountered when reading the instance data will be ignored.

• As with the schema-based loading, either a TSLGMLPropertyMapping or

TSLGMLPropertyMappingSet class instance can optionally be used when

loading without a schema. These mapping classes allow feature property

Commercial in Confidence

 GML SDK

© 2021 Envitia Ltd 236 AUM1107

 Commercial in Confidence

values to be used to populate rendering attributes and other properties of

the root MapLink entity representing the feature property.

24.4.1.3 Instance Data Ingest Options

The following options can be set on the TSLGMLInstanceDataLoader class to control

aspects of the ingest:

• The mapUnitShiftX, mapUnitShiftY and tmcPerMU options provide control

over how GML geometries are converted into TMC space.

• The swapXandY option sets whether the GML coordinates ingested should

be treated as Y, X rather than X, Y.

• The propertyMapping and propertyMappingSet methods allow the

settings of a mapping that will be used by subsequent loads. How these

mappings alter the ingest process is described in section 24.4.1.1.

• The unhandledFeatureCallback method allows a callback to be set on the

loaded that will be called whenever the loader encounters a feature

instance that it cannot process. This may occur if the instance is of a

feature type that is not supported by MapLink, contains a GML geometry

type that is not supported or when a feature instance is encountered that

is too complex during schema-less loading.

24.4.2 Instance Data Export

Exporting GML instance data requires it to be contained by a TSLStandardDataLayer in

the same form as schema-based reading populates a layer. Exporting is performed by

the TSLGMLInstanceDataWriter class and must be provided with both the

TSLStandardDataLayer and a TSLCoordinateSystem class instance. The

TSLCoordinateSystem describes both the CRS that the GML instance data will be written

in and how to convert the TMC based geometry into Map Units (MUs).

MapLink also requires the schema to be provided to the exporter so that it can determine

the format of the output. This schema can either be loaded using the

TSLGMLApplicationSchemaLoader or created using the

TSLGMLApplicationSchemaFactory.

Lastly, the export call can optionally be provided with a location at which the schema

should be referenced. This location will be used to populate the schemaLocation XML

attribute of the GML instance data document.

The following options are also available when exporting instance data and should be set

on the exporter prior to the export call being made:

• The swapXandY option sets whether the GML coordinates exported should

be treated as Y, X rather than X, Y.

• The propertyMapping and propertyMappingSet methods allow the

settings of a mapping that will be used by subsequent exports. These

mappings work in the reverse of how the ingest process uses them, thus

the entity’s properties are used to create the exported feature’s properties.

How these mappings alter the ingest process is described in section

24.4.1.1.

Commercial in Confidence

 WFS Client SDK

© 2021 Envitia Ltd 237 AUM1107

 Commercial in Confidence

25 WFS Client SDK

25.1 Library Usage and Configuration

As with most MapLink SDKs, the MapLink WFS Client SDK comes in 2 different flavours.

It should be noted that the library to be linked with should be determined by the Core

SDK library that you are using within your application. For example, if you are using the

Release mode, DLL version of the Core SDK (MapLink.lib/MapLink64.lib) then you must

also use the equivalent WFS Client SDK library (MapLinkWFSClient.lib/

MapLinkWFSClient64.lib).

MapLinkWFSClient.lib or
MapLinkWFSClient64.lib
Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink Core SDK library
(MapLink.lib) and MapLink GML SDK Library
(MapLinkGML.lib)

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

MapLinkWFSClientd.lib or
MapLinkWFSClient64d.lib
Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink Core SDK library
(MapLinkd.lib) and MapLink GML SDK Library
(MapLinkGMLd.lib)

No redistributable run-time available.

The MapLink WFS Client SDK is runtime locked meaning that before it may be used on

any machine it must be unlocked programmatically. This is achieved using the

TSLUtilityFunctions class by calling the unlockSupport method, passing the

TSLKeyedWFSClient enumeration value and the required unlock code. The unlock code

can be provided on request from Envitia Sales, subject to licensing.

The MapLink GML SDK is required in order to use the WFS Client SDK; therefore it must

also be unlocked as described in section 24.1.

Parts of the WFS Query functionality depend upon the MapLink OGC Filter SDK. To

enable the use of this functionality, applications will be required to additionally link to

this library.

MapLinkOGCFilter.lib or
MapLinkOGCFilter64.lib
Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

MapLinkOGCFilterd.lib or
MapLinkOGCFilter64d.lib
Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.

Commercial in Confidence

 WFS Client SDK

© 2021 Envitia Ltd 238 AUM1107

 Commercial in Confidence

25.2 Supported Capabilities

The MapLink WFS Client SDK offers the ability to connect a Web Feature Server (WFS)

that is compliant with version 1.1 of the OGC specification.11

It offers the ability to perform the ‘GetFeature’ operation on WFSs that serve GML that

is compatible with the MapLink GML SDK. It therefore does not support any of the

transactional operations of the WFS standard.

Both HTTP GET and POST formatted requests are supported for all its supported

operation types.

25.3 Connecting to a WFS

The TSLWFSServer class is used to connect to a WFS server, but the class cannot be

constructed directly. Instead the static create method should be called, passing the URL

through which the server should be reached. MapLink will at this stage perform a

‘GetCapabilities’ request to determine if the service is accessible and compatible.

Assuming the results of the ‘GetCapabilities’ request suggests that the service is

compatible, MapLink will perform one or more ‘DescribeFeatureType’ operations. The

purpose of this is to determine if any of the feature definitions that the service offers are

compatible.

If the service offers one or more feature definitions that MapLink supports, a

TSLWFSService object will be returned to the caller. This class offers the ability to access

the following:

• One or more TSLWFSFeatureType objects that represent the feature

metadata contained in the service’s ‘GetCapabilities’ results.

• One or more TSLGMLApplicationSchema object created from the service’s

‘DescribeFeatureType’ operation results.

• A TSLOGCFilterCapabilities object that describes the filter query

capabilities offered by the service, as described in the service’s

‘GetCapabilities’ results.

25.4 Querying a WFS

Once a TSLWFSServer object has been constructed, it is possible to perform WFS

‘GetFeature’ queries upon it. The query method should be provided with the following:

• A TSLStandardDataLayer into which the resultant GML instance data will

be placed.

• A pointer reference which will be set to a TSLCoordinateSystem

representing the Coordinate Reference System in which the geometry data

is returned.

• One or more TSLWFSQuery objects that contain the content of the query.

This class represent the wfs:Query XML element in the WFS 1.1 schema

and as such contains methods representing each of the child elements.

11 This section of the documentation, covering the use of the MapLink WFS Client SDK, assumes a
reasonable understanding of the WFS specification. For further information on this topic please
refer to the OGC website (http://www.opengeospatial.org/)

http://www.opengeospatial.org/

Commercial in Confidence

 WFS Client SDK

© 2021 Envitia Ltd 239 AUM1107

 Commercial in Confidence

• Optionally, the query method can be provided with a CRS name and input

coordinate system object. These must be provided if any of the

TSLWFSQuery objects contain geometry as they will be used when

converting them from MapLink entities to GML geometry primitives.

• Optionally, a maxFeatures parameter may be provided to limit the number

of results returned from the query. This value corresponds to the

maxFeatures attribute of the wfs:GetFeature request XML element.

Two settings on the TSLWFSServer class can alter the query logic:

1. The swapXandYInQueries methods can be used to alter whether the X and

Y values in the query geometry are swapped from X,Y to Y,X.

2. The validateFilterQueries methods can be used to alter whether

queries performed are first validated against the service’s capabilities.

Should a query fail to validate, then it will be rejected before being made

to the WFS server.

25.5 The TSLWFSQuery class

Figure 26 TSLWFSQuery classes hierarchy.

The TSLWFSQuery class forms the key content of a ‘GetFeature’ WFS request. It

represents a wfs:Query element as described in the WFS XML schema. Similarly, all the

child XML elements of the wfs:Query element are represented by MapLink classes. The

table below gives a few examples of schema element names and their corresponding

class name.

WFS/OGC Schema Element MapLink Class Name

wfs:Query TSLWFSQuery

wfs:PropertyName TSLWFSPropertyName

ogc:Function TSLOGCFunction

ogc:Filter TSLOGCFilter

TSLOGCFunction
(from MapLink OGC Filter API)

TSLWFSQueryPart TSLWFSPropertyName

TSLOGCFilter
(from MapLink OGC Filter API)

TSLWFSQuery

TSLOGCSortProperty
(from MapLink OGC Filter API)

0..10..1

0..n0..n

0..n0..n

The TSLWFSQueryPart class must

contain either a TSLOGCFunction or a

TSLWFSPropertyName, but not both

Commercial in Confidence

 WFS Client SDK

© 2021 Envitia Ltd 240 AUM1107

 Commercial in Confidence

ogc:SortProperty TSLOGCSortProperty

The classes prefixed with ‘TSLWFS’ are contained in the MapLink WFS Client SDK whereas

those prefixed with ‘TSLOGC’ are in the MapLink OGC Filter SDK. The TSLWFSQueryPart

class does not represent a specific XML schema element but is instead used to partially

represent the XML ‘choice’ portion of the wfs:Query definition.

The MapLink OGC Filter SDK is currently only used by the MapLink WFS Client SDK. It is

a library of classes that represent some of the XML elements described in the “OpenGIS

Filter Encoding Implementation Specification” version 1.1.0 and associated XML schema.

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 241 AUM1107

 Commercial in Confidence

26 .NET SDKs

Developers familiar with the MapLink C++ API will find that the .NET APIs are very

similar with the only major difference being the names of the classes.

The C++ API uses the class name prefix TSL to denote Envitia classes whereas the .NET

libraries use the prefix TSLN. Other differences include the removal of Envitia helper

classes such as TSLSimpleString, TSLifstream and TSLofstream which have been

replaced with similar helpers from the .NET framework.

Furthermore certain ‘getter’ and ‘setter’ methods have been replaced by .NET properties

or indexers.

Lastly the concept of colour indexes taken from the colour table has been hidden in the

.NET wrappers meaning that when getting or setting colours the .NET framework class

Color should be used.

Developers new to MapLink may wish to read the sections that deal with the basic use of

MapLink in this document as the use of the .NET wrappers is almost identical. Although

this section of the document will repeat some of these basic topics from a .NET view

point, it won’t cover them in such depth and is intended for users familiar with MapLink

to assist getting to grips with its use via .NET.

26.1 Library Usage and Configuration

Currently MapLink supports .NET wrappers for the following SDKs with the library name

and namespace listed:

SDK Library Name Namespace

Core SDK Envitia.MapLink64.dll

Envitia.MapLinkEx64.dll

Envitia.MapLink.NativeHelpers.dll

Envitia.MapLink

OpenGL Drawing

Surface SDK

Envitia.MapLink.OpenGLSurface64.dll Envitia.MapLink.OpenGLSurfac

e

OpenGL Track

Helper SDK

Envitia.MapLink.OpenGLTrackHelper64.dll

Direct Import

SDK

Envitia.MapLink.DirectImport64.dll

ttldirectimport.net64.dll

Envitia.MapLink.DirectImport

Interaction

Modes SDK

Envitia.MapLink.InteractionModes64.dll Envitia.MapLink.InteractionMod

es

Dynamic Data

Object SDK

Envitia.MapLink.DDO64.dll Envitia.MapLink.DDO

Editor SDK Envitia.MapLink.Editor64.dll Envitia.MapLink.Editor

Spatial Editor

SDK

Envitia.MapLink.Spatial64.dll Envitia.MapLink.Spatial

Terrain SDK Envitia.MapLink.Terrain64.dll Envitia.Maplink.Terrain

GeoPackage SDK Envitia.MapLink.GeoPackage64.dll

ttlgeopackage.net64.dll

Envitia.MapLink.GeoPackage

3D SDK Envitia.MapLink.ML3D64.dll Envitia.MapLink.ML3D

3D Interaction

Modes SDK

Envitia.MapLink.InteractionModes.ML3D64.dll Envitia.MapLink.InteractionMod

es.ML3D

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 242 AUM1107

 Commercial in Confidence

OGC Services

SDK

Envitia.MapLink.OGCServices64.dll Envitia.MapLink.OGCServices

Rendering

Attribute Panel

Envitia.MapLink.RenderingAttributePanel64.dll

ttlrenderingattributepanel.net64.dll

Envitia.MapLink.RenderingAttri

butePanel

S52/S63 SDKs Envitia.MapLink.S5264.dll

Envitia.MapLink.S6364.dll

Envitia.MapLink.S52

Envitia.MapLink.S63

All other libraries are dependent on the Core SDK wrappers, Envitia.MapLink, while the

Spatial Editor wrappers are also dependent on the Editor wrappers.

This is discussed further in the deployment guide, but it should be noted that these

libraries are all wrappers around the C++ versions and therefore require the C++

libraries at runtime. This also means that the .NET wrappers will not work with the

current versions of Mono, the .NET port to non-Windows operating systems.

The .NET version of the Spatial Editor SDK is the only SDK that does not offer all the

functionality of its C++ counterpart. Several helper classes dealing with Islands have

been omitted from this release. Later versions of MapLink may add this additional

functionality.

26.2 C# Walkthrough 1 - Your First C# MapLink Application

Please note that the Wizards are not available for Visual Studio 2015, see section 3.2.

This section guides you through constructing a simple MapLink application from the

skeleton application generated by the Visual Studio Application Wizard. The steps below

assume that you are using Visual Studio 2010 SP1, but similar steps apply when using

Visual Studio 2003, 2005 and 2008. By the end, you should have an application that can

load and display a map generated from MapLink Studio and can correctly handle paint

and resize events.

It is assumes that you are familiar with both C# and the earlier C++ walk through

application.

26.2.1 Skeleton Application

The starting point for this is a C# ‘Windows Forms Application’ Application Wizard

generated executable. These instructions assume that the .NET Framework 4 is

targeted.

26.2.2 Configure Project Properties

Once created, build your skeleton application to ensure it compiles and links. You then

need to import the appropriate MapLink .NET libraries into the project references. The

MapLink installer does not integrate these .NET assemblies into the Visual Studio

standard list of assemblies so you will need to browse to your installations bin directory,

E.G.

 C:\Program Files\Envitia\MapLink Pro\X.Y\bin64

Where X.Y is the version of MapLink you are using.

Use the standard C# ‘Windows Forms Application’ Application Wizard to generate your

skeleton application. The example application here is called “Hello Globe”.

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 243 AUM1107

 Commercial in Confidence

For the purposes of this walk through we will only import the Core MapLink .NET

assembly Envitia.MapLink64.dll

NOTE: If you look at any of the projects for the C# samples that ship with MapLink

you'll find that the MapLink .NET assemblies don't appear under the "References" node of

the Solution Explorer. This is because the Visual Studio GUI doesn't support the x86

build configurations using one assembly and the x64 configuration using another. The

underlying build system that Visual Studio uses, MSBuild, doesn't have such as limitation

so they're included in the project but just don't appear in the GUI.

26.2.3 Initialisation and Clean Up

The first thing you’ll need to do is add namespace declarations to the project’s main form

for all the newly added MapLink assemblies. This will mean that subsequent references

to MapLink classes won’t need to be prefixed with the namespaces that contain them.

The namespaces for each of the MapLink assemblies are listed in section 26.1, e.g.

 using Envitia.MapLink;

The configuration files for MapLink are usually only loaded once per execution run using

static methods of TSLNDrawingSurface. In a C# application this can be done in a

number of places, but the easiest is in the main form’s constructor. The simplest way to

go about this is to tell MapLink to load all standard configuration files from a particular

directory. If no directory is specified, then MapLink will assume that a full MapLink

installation has taken place and will attempt to load from there.

Once MapLink has been initialised, it needs to be cleaned up when the application exits,

otherwise Visual Studio will report numerous “leaks” which are in fact memory currently

in use when the application exits. This should be done in the Dispose method of the

main form. This Dispose method is usually provided for you in the form designer but

can be added via the class wizard if missing.

In the method constructor of the applications main form add a call to

TSLNDrawingSurface::loadStandardConfig. This should be done before the call to

InitializeComponent in case MapLink classes are constructed during this call.

You should be careful to check for, and report errors at this stage by using the methods supplied

on the TSLNErrorStack utility class.

 public Form1()

 {

 TSLNErrorStack.clear() ;

 String configDirPath = null; //Replace if deployed

 TSLNDrawingSurface.loadStandardConfig(configDirPath);

 String msg =

TSLNErrorStack.errorString("Initialisation errors :\n",

 TSLNErrorCategory.TSLNErrorCategoryError |

 TSLNErrorCategory.TSLNErrorCategoryFatal) ;

 if (msg != null)

 {

 MessageBox.Show(this, msg) ;

 Environment.Exit(-1);

 }

 InitializeComponent();

 }

When your application is deployed, make configDirPath variable point to the location of your

applications copy of the MapLink config directory.

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 244 AUM1107

 Commercial in Confidence

26.2.4 The Drawing Surface and Map Data Layer

First of all we’ll add some UI features to the main form to allow users to load a map:

• Add a Menu Strip to the form (Drag from the toolbox to the top of the

form in designer mode)

• Add a ‘File’ menu group.

• Add an ‘Open’ and ‘Exit’ menu items to the File menu group. Add an event

handler for each of the operations. (Click on the buttons to achieve this)

• Add an OpenFileDialog object to the main form. (Drag the icon from the

toolbox to anywhere on the form). Set the filter in the properties window

to:

MapLink Maps|*.map;*.mpc|All files|*.*

Also set the title and any other settings if required.

Next we’ll declare the variables required and setup the drawing surface:

• Before the constructor in the main form’s main class, declare

private instances of both the TSLNDrawingSurface and

TSLNMapDataLayer class and initialise them to null.

• Add an event handler for the main form’s ‘Load’ event. This can

be achieved via the properties window when the form is viewed

from the designer by clicking on the events (the lightning

icon) button at the top. When viewing the form events, find the

Load event and type a method name next to it, or double click

for the default method name to be used.

• In the load event handler construct the TSLNDrawingSurface,

passing in the form’s ‘Handle’ member variable and the second

argument as false to indicate that the handle is a window

handle. For example:

m_drawingSurface = new TSLNDrawingSurface(this.Handle, false);

Finally we’ll hook up the menu event handlers to allow the map to load and

the program to exit.

• In the File Open event handler call your instance of the

FileOpenDialog’s ShowDialog method. Capture the return value and

return from the method if it’s anything but DialogResult.OK.

The tidy up of MapLink should occur after the form’s components have been disposed of

but before the form itself is disposed of.

 protected override void Dispose(bool disposing)

 {

 if (disposing && (components != null))

 {

 components.Dispose();

 }

 TSLNDrawingSurface.cleanup();

 base.Dispose(disposing);

 }

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 245 AUM1107

 Commercial in Confidence

• Construct your instance of the TSLNMapDataLayer class and call its

loadData method using the filename retrieved from the user.

• Check the return value of the loadData call and if it fails check the error

stack for the reason.

• Finally add the new data load to your instance of TSLNDrawingSurface via

the addDataLayer method, assigning it a unique name.

For example:

• Lastly when the File Exit menu button is clicked call the form’s Close

method.

At this point it would be advisable to compile the project to check if any coding errors

have occurred so far. Although the program should run, you’ll find that it won’t do very

much as we haven’t told MapLink when it needs to draw yet!

26.2.5 Handling Paint and Resize Events

Since MapLink is passive, the application needs to handle relevant events and pass the

information onto MapLink. Most applications will only need to handle the window paint

and resize events.

A paint event can be triggered for many reasons, some of which will only want to redraw

part of the window. Under these circumstances, Windows will set up a Clip Box to define

the part that needs redrawing. To improve performance, it is best to only redraw that

part. It is most efficient to pass the required Device Unit extent to the Drawing Surface.

After handling a resize event, Windows will usually post a paint message so there is no

need to force a redraw in the resize handler. Just changing the window size may distort

the aspect ratio of the display, so MapLink can automatically adjust the visible map area

to be in sympathy with the aspect ratio of the window. This optional behaviour allows an

anchor point to be specified, which is kept at the same place when updating the visible

map area.

To add Paint and Resize event handlers to your form, the steps are the same as

outlined for adding a Load event handler detailed earlier in this walkthrough.

 private void openToolStripMenuItem_Click(object sender, EventArgs e)

 {

 if (openFileDialog1.ShowDialog() != DialogResult.OK)

 return;

 m_mapDataLayer = new TSLNMapDataLayer();

 if (!m_mapDataLayer.loadData(openFileDialog1.FileName))

 {

 String error = TSLNErrorStack.errorString("Errors:",

TSLNErrorCategory.TSLNErrorCategoryAll);

 m_mapDataLayer = null;

 if (error != null)

 {

 MessageBox.Show(this, "Error", error, MessageBoxButtons.OK);

 return;

 }

 }

 m_drawingSurface.addDataLayer(m_mapDataLayer, "map");

 m_drawingSurface.reset(true);

 }

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 246 AUM1107

 Commercial in Confidence

In the Paint event handler, first check that the drawing surface has been constructed and

if so request a redraw via the drawDU method, e.g.

In the Resize event hander, once again first check that the drawing surface has been

constructed and if so, request a resize via the wndResize method. The second to last

argument is whether a redraw should occur, which is required as .NET will only redraw if

the control gets larger. The final argument to the wndResize method dictates how the

existing view should relate to the new view, e.g.

Finally, we need to handle the initial resize of the main window. For some reason a

Resize event is not sent by the .NET framework when the form is initially sized. So we’ll

have to tell the drawing surface its initial size. Simple copy the wndResize statement

into your Load event handler after the drawing surface has been constructed.

Now build the program, run it and load one of the sample maps.

26.2.6 Further tweaks to your first MapLink C# application

One of the problems with the setup used in the walkthrough is that the menu strip at the

top of the application actually hides some of the map area. You’ll notice this affect if you

load a map as the area of white space at the bottom won’t match the amount at the top.

In the sample C# applications supplied with MapLink we get around this issue by moving

the drawing surface into a panel within the main form’s client area. The same effect

could, however, be achieved by sizing the drawing surface using the menu strip’s bottom

coordinates.

To add double buffering to the form in C#, users will need to override the form/panel’s

OnPaintBackground and not call the base implementation. This will be in addition to

calling setOption on the drawing surface as described in section 8.10, e.g.

 private void OnPaint(object sender, PaintEventArgs e)
{

 if (m_drawingSurface == null)

 return;

 m_drawingSurface.drawDU(e.ClipRectangle.Left, e.ClipRectangle.Top,

 e.ClipRectangle.Right,

 e.ClipRectangle.Bottom,true);

}

private void OnResize(object sender, EventArgs e)

{

 if (m_drawingSurface == null)

 return;

 m_drawingSurface.wndResize(ClientRectangle.Left,

 ClientRectangle.Top,

 ClientRectangle.Right,

 ClientRectangle.Bottom,

 true,

 TSLNResizeActionEnum.TSLNResizeActionMaintainCentre);

}

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 247 AUM1107

 Commercial in Confidence

NOTE: Override the OnPaintBackground method can cause havoc when viewing the UI

object via the Visual Studio designer. For an example of how to work around this

problem refer to the sample C# programs supplied with MapLink that utilise the

ControlDesigner class.

26.3 VB Walkthrough 1 - Your First VB MapLink Application

Please note that the Wizards are not available for Visual Studio 2015, see section 3.2.

This section guides you through constructing a simple MapLink application from the

skeleton application generated by the Visual Studio Application Wizard. The steps below

assume that you are using Visual Studio 2010 SP1, but similar steps apply when using

Visual Studio 2003, 2005 and 2008. By the end, you should have an application that can

load and display a map generated from MapLink Studio and can correctly handle paint

and resize events.

It assumes that you are familiar with both VB and the earlier C++ walk through

application.

26.3.1 Skeleton Application

The starting point for this is a VB ‘Windows Forms Application’ Application Wizard

generated executable. These instructions assume that the .NET Framework 4 is

targeted, although there will be instructions along the way for targeting Framework 2.

26.3.2 Configure Project Properties

Once created, build your skeleton application to ensure it compiles and links. You then

need to import the appropriate MapLink .NET libraries into the project references. The

MapLink installer does not integrate these .NET assemblies into the Visual Studio

standard list of assemblies so you will need to browse to your installations bin directory,

E.G.

 C:\Program Files\Envitia\MapLink Pro\X.Y\bin64

Where X.Y is the version of MapLink you are using.

For the purposes of this walk through we will only import the Core MapLink .NET

assembly Envitia.MapLink64.dll

NOTE: If you look at any of the projects for the C# samples that ship with MapLink

you'll find that the MapLink .NET assemblies don't appear under the "References" node of

the Solution Explorer. This is because the Visual Studio GUI doesn't support the x86

build configurations using one assembly and the x64 configuration using another. The

underlying build system that Visual Studio uses, MSBuild, doesn't have such as limitation

so they're included in the project but just don't appear in the GUI.

 protected override void OnPaintBackground(PaintEventArgs pevent)

 {

 // do nothing...

 // we don't want the background to flash over the map

 }

Use the standard VB ‘Windows Application’ Application Wizard to generate your skeleton

application. The example application here is called “Hello Globe”.

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 248 AUM1107

 Commercial in Confidence

26.3.3 Initialisation and Clean Up

The first thing you’ll need to do is import the namespaces to the project for all the newly

added MapLink assemblies. This will mean that subsequent references to MapLink

classes won’t need to be prefixed with the namespaces that contain them. The

namespaces for each of the MapLink assemblies are listed in section 26.1.

To import a namespace, navigate to the references tab of the project properties. At the

bottom of the page is a list of all the globally imported namespaces.

The configuration files for MapLink are usually only loaded once per execution run using

static methods of TSLNDrawingSurface. In a VB application this can be done in several

places, but the easiest is in the main form’s constructor. The simplest way to go about

this is to tell MapLink to load all standard configuration files from a particular directory.

If no directory is specified, then MapLink will assume that a full MapLink installation has

taken place and will attempt to load from there.

Once MapLink has been initialised, it needs to be cleaned up when the application exits,

otherwise Visual Studio will report numerous “leaks” which are in fact memory currently

in use when the application exits. This should be done in the Dispose method of the

main form.

Add a constructor to the application’s main form and add a call to

TSLNDrawingSurface::loadStandardConfig. This should be done before the call to

InitializeComponent in case MapLink classes are constructed during this call.

You should be careful to check for, and report errors at this stage by using the methods

supplied on the TSLNErrorStack utility class.

Public Sub New()

 TSLNErrorStack.clear()

 Dim configDirPath As String = Nothing 'Replace if deployed

 TSLNDrawingSurface.loadStandardConfig(configDirPath)

 Dim msg As String = TSLNErrorStack.errorString(

 "Initialisation Errors : \n",

 TSLNErrorCategory.TSLNErrorCategoryError Or

 TSLNErrorCategory.TSLNErrorCategoryFatal)

 If (Not msg Is Nothing) Then

 MessageBox.Show(Me, msg)

 Environment.Exit(-1)

 End If

 ' This call is required by the Windows Form Designer.

 InitializeComponent()

End Sub

When your application is deployed, make configDirPath variable point to the location of

your applications copy of the MapLink config directory.

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 249 AUM1107

 Commercial in Confidence

26.3.4 The Drawing Surface and Map Data Layer

First of all, we’ll add some UI features to the main form to allow users to load a map:

• Add a Menu Strip to the form (Drag from the toolbox to the top of the

form in designer mode)

• Add a ‘File’ menu group.

• Add an ‘Open’ and ‘Exit’ menu items to the File menu group. Add an event

handler for each of the operations. (Click on the buttons to achieve this)

• Add an OpenFileDialog object to the main form. (Drag the icon from the

toolbox to anywhere on the form). Set the filter in the properties window

to:

MapLink Maps|*.map;*.mpc|All files|*.*

Also set the title and any other settings if required.

Next we’ll declare the variables required and setup the drawing surface:

• Before the constructor in the main form’s main class, declare private

instances of both the TSLNDrawingSurface and TSLNMapDataLayer class

and initialise them to null.

• Add an event handler for the main form’s ‘Load’ event. This can be

achieved via the properties window when the form is viewed from the

designer by clicking on the events (the lightning icon) buttons at the top.

When viewing the form events, find the Load event and type a method

name next to it, or double click for the default method name to be used.

• In the load event handler construct the TSLNDrawingSurface passing in

the form’s ‘Handle’ member variable and the second argument as false to

indicate that the handle is a window handle. For example:

m_drawingSurface = New TSLNDrawingSurface(Me.Handle, False)

Finally, we’ll hook up the menu event handlers to allow the map to load and the program

to exit.

• In the File Open event handler call you instance of the FileOpenDialog’s

ShowDialog method. Capture the return value and return from the method

if it anything but DialogResult.OK.

• Construct your instance of the TSLNMapDataLayer class and call its

loadData method using the filename retrieved from the user.

The tidy up of MapLink should occur after the form’s components have been

disposed of but before the form itself is disposed of.

 Protected Overrides Sub Dispose(ByVal disposing As Boolean)

 Try

 If disposing AndAlso components IsNot Nothing Then

 components.Dispose()

 End If

 Finally

 TSLNDrawingSurface.cleanup() ‘MapLink Code

 MyBase.Dispose(disposing)

 End Try

 End Sub

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 250 AUM1107

 Commercial in Confidence

• Check the return value of the loadData call and if it fails check the error

stack for the reason.

• Finally add the new data load to your instance of TSLNDrawingSurface via

the addDataLayer method, assigning it a unique name.

For example:

• Lastly when the File Exit menu button is clicked call the form’s Close

method.

At this point it would be advisable to compile the project to check if any coding errors

have occurred so far. Although the program should run, you’ll find that it won’t do very

much as we haven’t told MapLink when it needs to draw yet!

26.3.5 Handling Paint and Resize Events

Since MapLink is passive, the application needs to handle relevant events and pass the

information onto MapLink. Most applications will only need to handle the window paint

and resize events.

A paint event can be triggered for many reasons, some of which will only want to redraw

part of the window. Under these circumstances, Windows will set up a Clip Box to define

the part that needs redrawing. To improve performance, it is best to only redraw that

part. It is most efficient to pass the required Device Unit extent to the Drawing Surface.

After handling a resize event, Windows will usually post a paint message so there is no

need to force a redraw in the resize handler. Just changing the window size may distort

the aspect ratio of the display, so MapLink can automatically adjust the visible map area

to be in sympathy with the aspect ratio of the window. This optional behaviour allows an

anchor point to be specified, which is kept at the same place when updating the visible

map area.

To add Paint and Resize event handlers to your form, the steps are the same as

outlined for adding a Load event handler detailed earlier in this walkthrough.

To the Paint event handler, first check that the drawing surface has been constructed

and if so, request a redraw via the drawDU method, e.g.:

 Private Sub OpenToolStripMenuItem_Click(...

 If (OpenFileDialog1.ShowDialog() <> DialogResult.OK) Then

 Return

 End If

 m_mapDataLayer = New TSLNMapDataLayer()

 If (Not m_mapDataLayer.loadData(OpenFileDialog1.FileName)) Then

 Dim errorStr As String = TSLNErrorStack.errorString("Errors:",

 TSLNErrorCategory.TSLNErrorCategoryAll)

 m_mapDataLayer = Nothing

 If (Not errorStr Is Nothing) Then

 MessageBox.Show(Me, "Error", errorStr, MessageBoxButtons.OK)

 Return

 End If

 End If

 m_drawingSurface.addDataLayer(m_mapDataLayer, "map")

 m_drawingSurface.reset(True)

 End Sub

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 251 AUM1107

 Commercial in Confidence

To the Resize event hander, once again first check that the drawing surface has been

constructed and if so, request a resize via the wndResize method. The second to last

argument is whether a redraw should occur, which is required as .NET will only redraw if

the control gets larger. The final argument to the wndResize method dictates how the

existing view should relate to the new view, e.g.:

Finally, we need to handle the initial resize of the main window. For some reason a

Resize event is not sent by the .NET framework when the form is initially sized. So we’ll

have to tell the drawing surface its initial size. Simple copy the wndResize statement

into your Load event handler after the drawing surface has been constructed.

Now build the program, run it and load one of the sample maps.

26.3.6 Further tweaks to your first MapLink VB application

One of the problems with the setup used in the walkthrough is that the menu strip at the

top of the application hides some of the map area. You’ll notice this affect if you load a

map as the area of white space at the bottom won’t match the amount at the top. In the

sample C# applications supplied with MapLink we get around this issue by moving the

drawing surface into a panel within the main form’s client area. The same effect could,

however, be achieved by sizing the drawing surface using the menu strip’s bottom

coordinates.

To add double buffering to the form in VB, users will need to override the form/panel’s

OnPaintBackground and not call the base implementation. This will be in addition to

calling setOption on the drawing surface as described in section 8.10, e.g.:

Private Sub Form1_Paint(...

 If (m_drawingSurface Is Nothing) Then

 Return

 End If

 m_drawingSurface.drawDU(e.ClipRectangle.Left,

 e.ClipRectangle.Top,

 e.ClipRectangle.Right,

 e.ClipRectangle.Bottom,

 True)

End Sub

Private Sub Form1_Resize(...

 If (m_drawingSurface Is Nothing) Then

 Return

 End If

 m_drawingSurface.wndResize(ClientRectangle.Left,

 ClientRectangle.Top,

 ClientRectangle.Right,

 ClientRectangle.Bottom,

 True,

 TSLNResizeActionEnum.TSLNResizeActionMaintainCentre)

End Sub

Commercial in Confidence

 .NET SDKs

© 2021 Envitia Ltd 252 AUM1107

 Commercial in Confidence

NOTE: Override the OnPaintBackground method can cause havoc when viewing the UI

object via the Visual Studio designer. For an example of how to work around this

problem refer to the sample C# programs supplied with MapLink that utilise the

ControlDesigner class.

Protected Overrides Sub OnPaintBackground(ByVal pevent As PaintEventArgs)

 ' do nothing...

 ' we don't want the background to flash over the map

End Sub

Commercial in Confidence

 MapLink Camera Manager

© 2021 Envitia Ltd 253 AUM1107

 Commercial in Confidence

27 MapLink Camera Manager

The Camera Manager is a new component which allows users to automatically fly the 3D

camera. This is done by defining the flight path of the camera based on a set of

waypoints. The Camera Manager calculates a flight path using a spline interpolation

based on the waypoints. The waypoints also define a time at which the camera will pass

through each position. Since the Camera Manager is a TSLTimeClient, it can then be

driven automatically along the flight path.

27.1 Library Usage and Configuration

As with the MapLink Core SDK, the MapLink Camera Manager comes in 2 different

flavours. It should be noted that the library to be linked with should be determined by

the Core SDK library that you are using within your application. For example, if you are

using the Release mode, DLL version of the Core SDK (MapLink.lib) then you must use

the equivalent Camera Manager library (MapLinkCameraManager.lib/

MapLinkCameraManager64.lib). The Camera Manager is dependent on the MapLink 3D

SDK. The table below describes the preprocessor directives and link options that should

be set in the Project Properties for using the MapLink Camera Manager. For X11 targets,

refer to the product Release Notes.

MapLinkCameraManager.lib or
MapLinkCameraManager64.lib

Release mode, DLL version.
Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

MapLinkCameraManagerd.lib or
MapLinkCameraManager64d.lib

Debug mode, DLL version.
Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.
KEYED: Development machines only.

27.2 MapLink Camera Manager Classes

27.2.1 TSLCameraManager

This class is responsible for controlling the 3D camera and its motion along a pre-defined

path. It is a client of TSLTimeServer and can therefore be controlled by the MapLink

Time SDK.

Users can access the flight path through the method flightPath which returns a

reference to the flight path object. The path can then be defined by passing it a set of

waypoints. Spline interpolation is used to create the actual path based on the supplied

waypoints.

Commercial in Confidence

 MapLink Camera Manager

© 2021 Envitia Ltd 254 AUM1107

 Commercial in Confidence

Figure 27 MapLink Camera Manager classes.

27.2.2 TSLFlightPath

The class represents a path through 3D space. It takes the user-defined set of

waypoints and creates a smooth interpolated path. By default, the path will pass

through each waypoint. An alternative is for the path to treat the waypoints as control

points and provide a smooth interpolation without necessarily going through each way

point. To achieve this, call the method passThroughWayPoints passing in false.

27.2.3 TSLFlightPoint

This class represents a point on the actual interpolated path which is created based on

the user-defined waypoints. It contains the following public attributes:

• latitude, longitude, altitude: The position of the flight point

(degrees, metres).

• bearing: The heading of the camera at the flight point (degrees).

• rateOfTurn: A measure of how quickly the path is changing direction at

this flight point (degrees/second).

• rateOfElevation: A measure of how quickly the path is changing altitude

at this flight point (metres/second).

Commercial in Confidence

 MapLink Camera Manager

© 2021 Envitia Ltd 255 AUM1107

 Commercial in Confidence

• entryTime, exitTime: The times at which the camera enters and leaves

the segment between this flight point and the next. The difference

between these times is the transit time of the segment from the flight

point to the next.

• viewX, viewY, viewZ: The components of the camera’s view vector.

27.2.4 TSLWayPoint

This class encapsulates a waypoint. Clients define a flight path by specifying a set of

waypoints. The actual flight path is created by using spline interpolation based on these

waypoints.

TSLWayPoint contains the following public attributes:

• sequenceNumber: This defines the position of the waypoint in the

waypoint collection (TSLWayPointSet).

• latitude, longitude, altitude: The position of the waypoint

(degrees, metres).

• lookAtLat, lookAtLon, lookAtAlt: The look-at position of the camera at

this point (degrees, metres).

• speed: The speed of the camera through this waypoint (metres/second).

• lookAtAzimuthOffset: This specifies the (horizontal) offset (degrees) of

the view vector – it is only used if the value of lookAtMode has been set to

TSLCameraModeLookAtRelative.

• lookAtElevationOffset: This specifies the (vertical) offset (degrees) of

the view vector – it is only used if the value of lookAtMode has been set to

TSLCameraModeLookAtRelative.

• lookAtMode: This specifies how the camera view vector is to be

orientated. The possible values are:

• TSLCameraModeLookAtFixed: The camera is to look at a fixed position.

• TSLCameraModeLookAtRelative: The camera is to look at a point relative

to its current position.

• timeMode: This specifies whether the time is calculated from the speeds

at the waypoints. The possible values are:

• TSLWayPointTimeModeAbsolute: The time at each waypoint is explicitly

defined.

• TSLWayPointTimeModeLegSpeed: The time at each waypoint is deduced

from the speed at the previous waypoint. The time in this case is based

on the time defined at the first waypoint.

• time: The time of arrival at the waypoint.

27.2.5 TSLWayPointSet

This class encapsulates a collection of TSLWayPoint objects.

Commercial in Confidence

 MapLink Camera Manager

© 2021 Envitia Ltd 256 AUM1107

 Commercial in Confidence

27.3 Sample Usage

The following code snippets show how the Camera Manager might be used in an MFC

application. All details except for those directly related to the Camera Manager are

omitted. Please refer to Section 18.2 for 3D-specific details.

class CMovieDoc : public CDocument

{

public:

 ...

 void addToTimeServer(TSLTimeClient* client);

 void startTimeServer(TSLTimeInstant const& t0,

 TSLTimerListener* listener);

 void startTimeServer();

 void stopTimeServer();

 void pauseTimeServer();

private:

 ...

 TSLTimeServer m_timeServer;

};

void CMovieDoc::addToTimeServer(TSLTimeClient* client)

{

 client->attachToServer(&m_timeServer);

}

void CMovieDoc::startTimeServer(TSLTimeInstant const& t0,

 TSLTimerListener* listener)

{

 TSLTimer& timer = m_timeServer.timer();

 TSLTimeHelper const& timeHelper = timer.timeHelper();

 timer.stop();

 static const double tickRate = 30.0; // frames/second

 static const double timeFrame = 15.0; // minutes

 timer.tickInterval(timeHelper.hertz(tickRate));

 timer.duration(timeHelper.minutes(timeFrame));

 timer.startTime(t0);

 if (listener)

 {

 timer.setListener(listener);

 }

 timer.start();

}

Commercial in Confidence

 MapLink Camera Manager

© 2021 Envitia Ltd 257 AUM1107

 Commercial in Confidence

The view class is a timer listener as it needs to control the drawing. The various

OnMovie... methods are triggered in response to a Windows command e.g. pressing the

‘Play’ button will trigger OnMoviePlay.

void CMovieDoc::startTimeServer()

{

 TSLTimer& timer = m_timeServer.timer();

 timer.start();

}

void CMovieDoc::stopTimeServer()

{

 TSLTimer& timer = m_timeServer.timer();

 timer.stop();

}

void CMovieDoc::pauseTimeServer()

{

 TSLTimer& timer = m_timeServer.timer();

 timer.pause();

}

class CMovieView : public CView, public TSLTimerListener

{

public:

 ...

 virtual void OnInitialUpdate();

 virtual void onStart(TSLTimer* timer) {}

 virtual void onStop(TSLTimer* timer) {}

 virtual void onPause(TSLTimer* timer) {}

 virtual void onBeginTick(TSLTimer* timer) {}

 virtual void onEndTick(TSLTimer* timer, bool changed);

 ...

 afx_msg void OnDefinePath();

 afx_msg void OnMoviePlay();

 afx_msg void OnMoviePause();

 afx_msg void OnMovieStop();

private:

 ...

 TSLCameraManager* m_cameraManager;

 bool m_running;

 bool m_paused;

};

Commercial in Confidence

 MapLink Camera Manager

© 2021 Envitia Ltd 258 AUM1107

 Commercial in Confidence

The points can be retrieved either interactively (e.g. by capturing mouse clicks) or even

by loading in a text file containing the data.

void CMovieView::OnInitialUpdate()

{

 ...

 m_drawingSurface = new TSL3DWinGLSurface(m_hWnd, false);

 // Create the camera manager.

 m_cameraManager = new TSLCameraManager(m_drawingSurface);

 ...

 doc->addToSurface(m_drawingSurface);

 // Add the camera manager as a client of the time server.

 doc->addToTimeServer(m_cameraManager);

 ...

}

void CMovieView::OnDefinePath()

{

 // Get the points somehow.

 ...

 TSLWayPointSet theWay;

 for (... i in each point ...)

 {

 TSLWayPoint wp;

 wp.m_sequenceNumber = 10*i;

 wp.m_latitude = lat;

 wp.m_longitude = lon;

 wp.m_altitude = alt;

 wp.m_lookAtLat = lookAtLat;

 wp.m_lookAtLon = lookAtLon;

 wp.m_lookAtAlt = lookAtAlt;

 wp.m_speed = speed;

 wp.m_timeMode = TSLWayPointTimeModeLegSpeed;

 theWay.add(wp);

 }

 // Update the flight path.

 TSLFlightPath& path = m_cameraManager->flightPath();

 bool passThroughWayPoints(true);

 path.addWayPoints(theWay, passThroughWayPoints);

 }

Commercial in Confidence

 MapLink Camera Manager

© 2021 Envitia Ltd 259 AUM1107

 Commercial in Confidence

of drawing stalls to one (occurs after step 3).

void CMovieView::OnMoviePlay()

{

 CMovieDoc* doc = GetDocument();

 if (m_paused)

 { // Now re-start the movie.

 doc->startTimeServer();

 }

 else

 { // Prepare the manager.

 m_cameraManager->prepare();

 // Now play the movie.

 doc->startTimeServer(t0, this);

 }

 m_running = true;

 m_paused = false;

}

void CMovieView::OnMoviePause()

{

 CMovieDoc* doc = GetDocument();

 doc->pauseTimeServer();

 m_running = false;

 m_paused = true;

}

void CMovieView::OnMovieStop()

{

 CMovieDoc* doc = GetDocument();

 doc->stopTimeServer();

 m_running = false;

 m_paused = true;

}

void CMovieView::onEndTick(TSLTimer* timer, bool changed)

{

 if (!changed)

 {

 timer->stop();

 m_running = false;

 m_paused = false;

 }

 // Now force the display to be redrawn.

 InvalidateRect(0, false);

}

Commercial in Confidence

 Floating Point

© 2021 Envitia Ltd 260 AUM1107

 Commercial in Confidence

28 Floating Point

The MapLink libraries assume that the floating-point unit is set to that used by the

C/C++ runtime.

If you are using MapLink via .NET or similar technologies, you need to ensure that the

floating point setup matches that of the C/C++ runtime.

In addition, the DirectX Accelerator SDK requires a specific setup (DirectX requirement).

Commercial in Confidence

 Other SDKs

© 2021 Envitia Ltd 261 AUM1107

 Commercial in Confidence

29 Other SDKs

These other MapLink SDKs will be discussed in much greater detail in a future version of

this document. Please contact Envitia support to see if there is a newer version

available.

The intended topics are:

Interactive Editing with the Editor SDK:

• Editing Architecture

• Interactive Operations

• Entity Creation

• Entity Manipulation

Network Analysis and Routing:

• Network Construction

• Network Traversal

• Routing and Complex Cost Objects

Commercial in Confidence

 Threading

© 2021 Envitia Ltd 262 AUM1107

 Commercial in Confidence

30 Threading

This section applies to the Core SDK, Terrain SDK, 3D SDK, Accelerator SDK and

Dynamic Data Object SDK only. With other SDKs ensure that you do not share objects

across threads.

Introducing multi-threading complicates matters as MapLink is not completely thread

safe. This is principally to ensure maximum performance.

You should review the whole of this section if you are going to use MapLink in multiple

threads.

If you are using MapLink for drawing in multiple threads, then you may need to use the

following methods:

• TSLUtilityFunctions::getThreadedOptions

• TSLUtilityFunctions::setThreadedOptions

The following classes have been updated to provide additional functions which do not

store results in static data:

• TSLCoordinateConverter

• TSLProfileHelper

• TSLPathList

• TSLCoordinateConverter

• TSLFileLoader

• TSLInteropConfig

• TSLInteropExportSet

• TSLInteropImportSet

The following methods are no longer static:

• TSLMapDataLayer::setRuntimeProjectionParameters (C++ /.NET)

• TSLAPPSymbol::write

30.1 Known Threading Issues

The following are known not to be thread-safe and you should stop all threads before

performing any of the following (PLEASE read the following sections as well):

• Any method noted as Deprecated by the compiler should be updated to

use the new replacement method.

• Loading and adding CoordinateSystems and CoordinateSystem registries.

• Static setter methods are not thread safe. For example, you should make

sure that if you set your own loader or pathlist on the Drawing Surface

that this occurs before your application starts any threads using MapLink

(or stop all threads using MapLink outside of MapLink methods).

• Don't share Display connections between threads on X11. Resources are

keyed on the Display.

• Seamless Layer Manager is not thread safe.

Commercial in Confidence

 Threading

© 2021 Envitia Ltd 263 AUM1107

 Commercial in Confidence

• Flashback is not thread safe.

• History is not thread safe.

• DBIF is not thread safe.

• Entity Store SDK is not thread safe.

• S63 SDK is not thread safe when saving data.

• Don't setup a Persistent cache with shared layers.

• Sharing Drawing surfaces between threads is not safe.

• TSLErrorStack interface is not thread safe, use the

TSLThreadedErrorStack.

The following Core SDK methods and classes are also known not to be thread safe. If

you need to call the methods from a multi-threaded context protect the calls and copy

the results immediately.

• TSLCompareHelper

• TSLVariant::id (use getID)

• TSLMapDataLayer::getPaletteFilename

• TSLMapDataLayer::getPathlistFilename

• TSLMapDataLayer::getDetailLayerName

• TSLMapDataLayer::getOverviewLayer

• TSLMapDataLayer::metadata

• TSLErrorStack::first (use TSLThreadedErrorStack)

• TSLErrorStack::index (use TSLThreadedErrorStack)

• TSLErrorStack::lastError (use TSLThreadedErrorStack)

• TSLErrorStack::next (use TSLThreadedErrorStack)

• TSLErrorStack::previous (use TSLThreadedErrorStack)

• TSLProfileHelper

• TSLInteropConfig::basefilename

• TSLInteropConfig::groupingAttribute

• TSLInteropExportSet::item

• TSLInteropImportSet::item

• TSLMapDataLayer::copyRasterFeatures

• TSLSeamlessLayerManager::setMapLinkVersion

• TSLUtilityFunctions::sav(int arg)

• TSLPathList::getMatchingDirectories

(use getMatchingDirectoriesMT)

Commercial in Confidence

 Threading

© 2021 Envitia Ltd 264 AUM1107

 Commercial in Confidence

30.2 Threading Options

Several threading options can be set or cleared when using MapLink. Currently the only

one that you should consider using is the TSLThreadedOptionsRenderingSupport (also

see 30.5.2).

The threading options may be set and queried using the following methods:

• TSLUtilityFunctions::setThreadedOptions

• TSLUtilityFunctions::getThreadedOptions

30.3 Saving Data

MapLink allows you to save data as the current version or as a previous version.

The setting of the version is not local to a layer but is stored globally, because of this we

currently take a global lock to ensure data is written out in the correct version.

30.4 Drawing Surface ID

The drawing surface ID that the user can set is no longer used by MapLink. We now

create a unique value internally.

The user ids must be positive values. If the user does not set one the internal unique id

is returned as a negative number.

30.5 CoreSDK

The following notes are based upon our experiencing of using MapLink in multiple

threads.

30.5.1 Drawing Surface Resource Loading

In general, you should setup the Drawing Surface resources before your application goes

multi-threaded. The line-styles, fill-styles, fonts and symbols are a shared resource and

take time to load. The loading is thread-safe however the propagation of the new

resources is lazy and only occurs on a draw.

Note: Delayed loading of resources is not thread-safe.

30.5.2 Drawing Surface Rendering

While in general the drawing is thread safe you should avoid sharing layers between

threads (see 30.5.4).

If you wish to share the TSLStandardDataLayer (see 30.5.4.1) between threads then

you need to call TSLUtilityFunctions::setThreadedOptions to set the bit represented

by TSLThreadedOptionsRenderingSupport.

30.5.3 Coordinate System Resource Loading

The loading of the Coordinate System information

(TSLCoordianteSystem::loadCoordinateSystems) is not thread safe and therefore the

coordinate systems should be loaded before the application uses MapLink in a threaded

manner. A map loads and creates a coordinate system local to the layer so it is not

Commercial in Confidence

 Threading

© 2021 Envitia Ltd 265 AUM1107

 Commercial in Confidence

strictly necessary to load all the Coordinate Systems unless you need to convert between

different projections.

30.5.4 Data Layers

The following types of data layers must not be shared between threads:

• Map Data Layers

• CADRG Data Layers

• Raster Data Layers

• WMS Data Layers

• Filter Data Layers

• All Grid Data Layers

• ECW Layer

• Dynamic Object Data-layer and the Display Objects

Adding or removing a layer from a drawing surface is not thread safe. Stop all drawing

surfaces that the layer is to be added to or removed from before adding or removing.

30.5.4.1 Standard Data Layer

Sharing the standard 2D data-layer is safe as long as the Drawing Surface IDs are

different for each thread (see 30.5.2).

You must not edit (add or remove entities) the layer unless you stop the drawing in all

threads the layer has been added too.

The changing of rendering styles is permitted, though the updating of the drawing

maybe delayed.

30.5.4.2 Custom Data Layer

It is the responsibility of the developer to ensure that the layer is thread-safe.

If you are adding a Custom 2D Data Layer to an Accelerator or 3D surface, you should

note that the layer will be called from a back-ground thread.

30.5.5 Dynamic Rendering

It is the responsibility of the developer to ensure that the dynamic renderer is thread-

safe.

If you are adding a dynamic renderer to an Accelerator or 3D surface then you should

note that the layer will be called from a back-ground thread

30.5.6 TSLPathList

TSLPathList is not thread safe unless the application takes the following measures:

1. Do not use the callback.

2. If you are setting up a pathlist for the Drawing Surfaces to use; Set up the

drawing surface pathlist object and add this to the drawing surface before

your application starts using multiple threads.

Commercial in Confidence

 Threading

© 2021 Envitia Ltd 266 AUM1107

 Commercial in Confidence

3. If you need to change the drawing surface pathlist or modify it after your

application has started its threads; Stop all threads outside of MapLink calls

and do the necessary modifications.

4. If you are setting up a pathlist for data layers; Ideally use a separate pathlist

per map data-layer (do not share cached layers between drawing surfaces in

different threads). If you need to share the pathlist between map data-layers

then only modify the pathlist when all threads using MapLink are stopped

outside of MapLink method calls.

30.6 User Geometry

It is the developer’s responsibility to ensure thread safety for the user implemented

functionality

30.7 Dynamic Data Object Layer

The Dynamic Data Object Layer should not be shared between Drawing Surfaces in

different threads.

The layer and its associated objects should only be modified from the thread containing

the associated Drawing Surface.

30.8 Terrain SDK and Contouring SDK

Terrain can be used in multiple Threads as long as the terrain layer

(TSLTerrainDatabase) is unique for each thread (not shared between threads).

The Contouring SDK has not been used in a threaded manner and thus may not be

thread-safe. The Contouring SDK modifies the floating-point registry to enable strict

IEEE floating point and as such is unlikely to be thread-safe.

30.9 3D SDK & Accelerator SDK

Both the 3D and Accelerator Drawing surfaces use a background thread for drawing 2D

layers.

The 3D SDK and the Accelerator SDK clone their Map, CADRG and WMS Data Layers to

ensure thread safety. These layers can be shared between Drawing Surfaces in the same

thread.

Other data-layers are not currently cloned and as such you should not share these layers

between multiple drawing surfaces, with the exception of the 2D Standard Data Layer

(see 30.5.4.1). In addition, you should stop the drawing surfaces before modifying the

layers in any-way.

All data layer types, except the S63 and ECW Data-layer, should be acceptable to the 3D

SDK and Accelerator SDK. If you need to use these layers with the 3D or Accelerator

SDK please contact support.

• Drawing should always occur from the thread that created the Surface.

• Sharing Drawing surfaces between threads is not safe.

• Picking with 3D Surface is not thread safe. Picking must occur in the main

drawing thread.

• Removing and deleting 3D entities is not thread safe. Removing and

deleting of entities must occur in the main drawing thread.

Commercial in Confidence

 Threading

© 2021 Envitia Ltd 267 AUM1107

 Commercial in Confidence

• Deleting a layer in a thread other than the main drawing thread is not

thread safe (deletion of OpenGL/DirectX resources will occur).

30.9.1 Accelerator Drawing Surface Rendering

While in general the drawing is thread safe you should avoid sharing layers between

threads (see 30.5.4).

If you update a layer's content the changes will not be reflected upon the display until

you have called notifyChanged on the surface.

30.9.2 3D Drawing Surface Rendering

While in general the drawing is thread safe you should avoid sharing layers between

threads (see 30.5.4).

If you wish to share the TSL3DStandardDataLayer between threads, you must call

TSLUtilityFunctions::setThreadedOptions to set the bit represented by

TSLThreadedOptionsRenderingSupport. In addition, you must add the layer to all

drawing surfaces before you start any drawing and you should not edit the layer once

drawing has occurred.

Ideally you should not share the TSL3DStandardDataLayer between threads principally

because we store data upon the entities which is drawing surface specific and the locking

will affect the performance of the drawing.

30.10 X11 Threading

On X11 you must either serialise the calls to MapLink or use a separate display

connection for each drawing surface.

Resources are allocated on a display basis and are cached in MapLink based on the

Display as the key.

Use of separate display connections in each thread is the safe way to use MapLink.

Sharing of Display connections may appear to work until you start using processors with

multiple cores or a multi-processor system.

You should call XInitThreads() before any other Xlib calls in your application as the Xlib

library and generally the extensions are not thread safe until this method has been

called. You may need to review the source code of the libraries you use as we know that

the Xft extension is not thread safe.

We have found that XInitThreads() is not always required if you limit your use to Xlib

and avoid Xft (or protected access to Xft methods - see 30.2 and 12.6.5.1), however this

is a case of test and review the client side library source code as the versions you are

using may be very different from the ones we have used. Additionally, we have ensured

that we do not share X resources between drawing surfaces.

The principle drawing limitation in a threaded environment is the X-Server. The X-Server

is a single process so all drawing calls will be serialised at the X-Server. This is not

necessarily a problem as MapLink and your application may be able to do something else

in the dead time.

Synchronisation calls are kept to a minimum within the X11 Drawing Surface.

Commercial in Confidence

 DIGM to TMF Conversion

© 2021 Envitia Ltd 268 AUM1107

 Commercial in Confidence

31 DIGM to TMF Conversion

There are 4 stages to performing DIGM to TMF conversion using

TSLDIGMConverter. This class is defined in the ‘LandLinkDIGMConv.h’ file.

31.1 Rendering Attribute version setup

MapLink and GMS/DIGM handle rendering attributes differently and a mapping needs to

be configured for colours and styles.

Set the colour index to map GMS colour 0 (typically white) to the specified MapLink

colour index. If no mapping is set, the index is mapped to 1, since MapLink index 0 is

no-colour.

GMS handles hollow fill using FINTER attribute of 0. MapLink uses a specific fillstyle.

Default is 0.

GMS handles solid fill using FINTER attribute of 1. MapLink uses a specific fillstyle.

Default is 0.

GMS handles patterned fill using FINTER attribute of 2 or 3. MapLink uses a specific

fillstyle.

MapLink does not support FINTER 2 and it is mapped internally to FINTER 4.

If no mapping is specified, then the fill style is used unchanged.

Add a mapping between symbols with specified style index and stamps (model

instances) of the given name – if a model instance of ‘stampName’ is found, this is

mapped to a TSLSymbol of the specified index. If no mapping exists, the model instance

is silently ignored.

Add a mapping between GMS text font (precision/font pair) to MapLink font style. If no

mapping is specified, then the font style is used unchanged.

A typical setup for the Capture Tool is

void setColour0Index(int index);

void setFinter0Mapping(long index);

void setFinter1Mapping(long in);

void addFillMapping(long gmsFStyle, long tmsFillStyle);

void addStampMapping(long index, const char *stampName);

bool addFontMapping(long gmsPrecision, long gmsFont, long maplinkFont);

Commercial in Confidence

 DIGM to TMF Conversion

© 2021 Envitia Ltd 269 AUM1107

 Commercial in Confidence

31.2 Complex polygon handling

By default, MapLink will attempt to decomplexify complex polygons automatically and

silently – simplify self-intersections and remove spikes. Arrows are handled specially to

avoid removal of spikes. If any decomplexification fails, then an error may be placed on

the error stack. See <MapLink>\config\tsllandlinkdigmconverrors.msg and

tsltgmerrors.msg for a list of errors that are relevant. Note that some of these error

messages are historical and may never be generated and some are warnings.

If decomplexification fails, then MapLink attempts to create an invalid, complex polygon,

but sets the feature code to a specific value and can optionally change the rendering

attributes. Such polygons should not be used for spatial operations, nor edited.

Set feature code for failed complex polygons. Default is 9999.

The modify flag is used to indicate whether to modify the attributes of failed complex

polygons, and if so, what to. The default is false.

31.3 Coordinate System setup

DIGM stores coordinates is a scaled offset form of the base GMS units. The following

two methods are used to specify the conversion between the MapLink coordinate space

and DIGM and GMS units.

A typical setup for the Capture Tool is as follows. Different units may be required for

Orkney/Shetland - see application code.

TSLDIGMConverter converter;

converter.setColour0Index(46);

converter.setFinter0Mapping(8);

converter.setFinter1Mapping(1);

converter.addFillMapping(4,2);

converter.addFillMapping(7,14);

void setComplexPolygonFeatureCode(long featureCode);

void modifyAttributesOnComplexPolygons(bool modify);

void complexPolygonAttributes(long fillColour, long fillStyle, long

edgeColour, long edgeStyle, long edgeThickness);

void setupDIGMtoTMCConversion(double scale,

 double xOffset, double yOffset);

void setupDIGMtoGMSConversion(double scale,

 double xOffset, double yOffset);

Commercial in Confidence

 DIGM to TMF Conversion

© 2021 Envitia Ltd 270 AUM1107

 Commercial in Confidence

31.4 Perform import conversion

The following function converts the specified DIGM buffer, of specified size to a TMF

entity set.

If the ingest fails for any reason, the function will return false. Additional information

about the failure may be found by querying the error stack.

The DIGM buffer must contain data as it would be written to disk by GSQL/DIGM, not as

a database unload of the BLOB. Thus, it needs to be of the following form, taking note of

lack of backslashes at end of line and lack of NULL character at the end of file:

converter.setupDIGMtoTMCConversion(10,0,0);

converter.setupDIGMtoGMSConversion(.001,-29000,-66400);

bool import (TSLEntitySet *entitySet,

 const unsigned char *buffer, long size);

VS 1

DE 1

XO 28849577.500 64349504.800

TC 7

BC 0

PA 1

PR 1

TS 1 1

AL 1 4

HT 0.200000

TE "Text1" 592.400 566.500

.XM -0.013134332831462611 -0.99991374093022267 0 0.99991374093022267 -

0.013134332831462611 0

.MV -2051127.3934587948 123459.22996837646 1

Commercial in Confidence

 Developers Guide UNIX/Linux/VxWorks (X11)

© 2021 Envitia Ltd 271 AUM1107

 Commercial in Confidence

App A Developers Guide UNIX/Linux/VxWorks (X11)

MapLink has been ported to a variety of operating systems (OS), the common

denominator being that X11 is available for those operating systems.

Limitations which are specific to a particular OS and compiler configuration can be found

in the X11 Release Notes.

The principles outlined in the ‘Developers Guide for MapLink’ are applicable for use with

MapLink on an X11 platform. This section covers the differences between Windows and

X11 runtime programming.

A.1 Programming for X11

A.1.1 TSLMotifSurface
The primary programming difference between Windows and X11 is the Drawing Surface

class that you use. For X11 you will use: TSLMotifSurface (should really have been

called X11DrawingSurface).

There are two constructors for this class:

• TSLMotifSurface (Display* display, Screen* screen, Colormap

colormap, Drawable handle, int flags = 0, Visual* visual = 0);

• TSLMotifSurface (Display* display, Drawable handle, int flags =

0);

Ideally you should pass as much information to MapLink as possible. This is particularly

important when using raster maps, as the actual Visual is required so that the correct

raster drawing routines can be used.

TSLMotifSurface is a simple class, which provides several additional X11 specific

methods, which also have similar methods on the TSLNTSurface as follows:

• int colourValue (int index);

• bool fillStyleValue (int index, int colour, Pixmap pixmap,

TSLSimpleString *section = 0);

• bool fontStyleValue (int index, int colour, Pixmap pixmap,

const char** fontName = 0, const char *outputString = 0,

TSLSimpleString *section = 0);

• bool lineStyleValue (int index, int colour, int thickness,

Pixmap pixmap, TSLSimpleString *section = 0);

• bool symbolStyleValue (int index, int colour, Pixmap pixmap,

uint32_t fontSymbolCharacter = 0, TSLRasterSymbolScalable

rasterSymbolScalability = TSLRasterSymbolScalableAsSymbolFile,

TSLSimpleString *section = 0);

• bool drawToDrawable (Drawable drawable, double x1, double y1,

double x2, double y2, bool clear);

• bool attach (Drawable handle, bool isPixmap, Display* display =

0, Screen* screen = 0, Colormap colormap = -1, Visual* visual =

0);

• bool fullDetach ();

Commercial in Confidence

 Developers Guide UNIX/Linux/VxWorks (X11)

© 2021 Envitia Ltd 272 AUM1107

 Commercial in Confidence

All the above methods are specific to X11 (not all the default parameters are shown).

When creating an application for X11, regardless of GUI toolkit, the principles behind the

‘Walkthrough 1 – Your First MapLink Application’ are just as valid. Some samples are

included with the CD to help you.

A.1.1.1 Actions on close of Display
You should call TSLDrawingSurface::cleanup() before you close the Display.

A.1.2 Using GUI Toolkits with MapLink
MapLink does not depend on any particular GUI toolkit to work. MapLink relies only on

Xlib.

It is therefore possible to use MapLink with any number of GUI toolkits, such as Motif,

FOX (http://www.fox-toolkit.org/) or Qt (http://www.trolltech.com).

We now ship samples for Qt 4.7 and Qt 5.15.

A.1.2.1 Using Qt4.X
If you have difficulty integrating MapLink with Qt please contact support.

Add a method to the Custom Widget as follows:

virtual QPaintEngine *paintEngine() const

{

 return 0;

}

This stops Qt drawing into the Widget itself.

In the Custom Widget constructor add the following:

// This is required for Qt4 to stop the back ground being drawn

// and Qt Double buffering. You also need to override

// paintEngine().

//

// Ref:

// http://lists.trolltech.com/qt-interest/2006-02/thread00004-0.html

//

setAttribute(Qt::WA_NoBackground, true);

setAttribute(Qt::WA_NoSystemBackground, true);

// Possible issue with this for Qt4.1.0 and newer versions.

//

// See:

// http://www.trolltech.com/developer/task-tracker/index_html?id=106922&method=entry

// http://lists.trolltech.com/qt-interest/2006-05/thread00316-0.html

//

// Talk to Trolltech support about getting a fix if this proves to

// be a problem

//

// NOTE: I am not seeing this problem, probably because I'm doing

// things slightly differently from the example.

setAttribute(Qt::WA_PaintOnScreen, true);

setAutoFillBackground(false); //should be true for Qt4.1 and 4.0

For Qt4.1 and newer you will need to add the following:

setAttribute(Qt::WA_OpaquePaintEvent);

http://lists.trolltech.com/qt-interest/2006-02/thread00004-0.html
http://www.trolltech.com/developer/task-tracker/index_html?id=106922&method=entry
http://lists.trolltech.com/qt-interest/2006-05/thread00316-0.html

Commercial in Confidence

 Developers Guide UNIX/Linux/VxWorks (X11)

© 2021 Envitia Ltd 273 AUM1107

 Commercial in Confidence

When you construct the MapLink Drawing Surface use the winId or handle method as

follows:

// Attaching to the window is much more efficent.

 #ifdef WINNT
 HWND hWnd = (HWND) winId();

 m_drawingSurface = new TSLNTSurface(hWnd, false);

 #else
 QX11Info x11info = this->x11Info();

 Display *display = x11info.display();

 int screenNum = x11info.screen();

 Visual *visual = (Visual *)x11info.visual();

 Qt::HANDLE colourmap = x11info.colormap();

 Qt::HANDLE drawable = handle();

 Screen *screen = ScreenOfDisplay(display, screenNum);

 m_drawingSurface = new TSLMotifSurface(display, screen, colourmap,

 drawable, 0, visual);

 #endif

The paintEvent in the Custom Widget should look something like this:

void MapLinkWidget::paintEvent (QPaintEvent *rect)

{

 if (m_drawingSurface == NULL)

 create();

 if (m_initialUpdate)

 resizeCanvas();

 const QRect &r = rect->rect();

 long x1 = r.x() ;

 long y2 = r.y() ;

 long x2 = r.x() + r.width() ;

 long y1 = r.y() + r.height() ;

 m_drawingSurface->drawDU(x1, y1, x2, y2, true, true) ;

}

A.1.2.2 Using Qt 5.1 or later
Add a method to the Custom Widget as follows:

virtual QPaintEngine *paintEngine() const

{

 return NULL;

}

This stops Qt drawing into the Widget itself.

In the Custom Widget constructor add the following:

 setAttribute(Qt::WA_OpaquePaintEvent);

 setAttribute(Qt::WA_PaintOnScreen);

 setAttribute(Qt::WA_NativeWindow);

 setAutoFillBackground(false);

When you construct the MapLink Drawing Surface use the winId method as follows:

#ifdef WIN32
 m_surface = new TSLNTSurface((HWND)winId(), false);
#elif QT_VERSION >= 0x50100
 // Qt 5.1 or newer
 Display *display = QX11Info::display();

Commercial in Confidence

 Developers Guide UNIX/Linux/VxWorks (X11)

© 2021 Envitia Ltd 274 AUM1107

 Commercial in Confidence

 WId wid = winId();

 XWindowAttributes attribs;
 XGetWindowAttributes(display, wid, &attribs);

 m_surface = new TSLMotifSurface(display, attribs.screen, attribs.colormap, wid, 0,
 attribs.visual);
#else
 // Qt 5.0 does not provide easy an easy way of accessing the X11 display or drawable
 // for the widget. It is recommended that you upgrade to Qt 5.1 or later.
#endif

A.1.2.3 Drawing on top of MapLink using Qt
In order to use Qt to draw on top of MapLink rendering, you will need to draw the map

data into a QtPixmap and blit the QtPixmap to the screen. The code to disable the Qt

double buffering and background clearing is probably no-longer required depending on

what you are trying to achieve.

A.2 Text Drawing
The X11 drawing code now uses Pango to draw text so that we can support Unicode. On

most platforms Pango uses Xft and hence XRender.

On ‘Solaris 10 x86’ we have had to use the latest Xft because the one shipped is too old

to work effectively with XRender. The version of Pango we are using is the latest one

that we were able to compile using the development environment available on the

platform.

On ‘Solaris 10 SPARC’ the version of Pango we are using is the latest one that we were

able to compile using the development environment available on the platform.

A.3 Dynamic Data Object SDK
Dynamic Data Object (DDO) SDK allows developers to create fully dynamic overlays

within a MapLink application (see Developers Guide).

When you create a TSLDisplayObject derived class you have two options when

implementing the draw method.

1. Make a sequence of calls to the Rendering Interface to set up attributes and

draw graphical primitives (portable).

2. Draw using X11 drawing methods (non-portable, optimal).

Obtaining the Display and Drawable can be achieved as follows:

bool AircraftDO::draw(TSLRenderingInterface *d_surface,

 TSLEnvelope *d_extent)

{

 long ldisplay;

 Drawable drawable = (Drawable)

 (d_surface->handleToDrawable(&ldisplay));

 Display* display = (Display*)ldisplay;

 // ……

}

The TSLRenderingInterface also provides access to the Visual, Colormap and Screen.

This will make it easier to create pixmaps and images in a custom data layer or via a

DDO.

Commercial in Confidence

 Developers Guide UNIX/Linux/VxWorks (X11)

© 2021 Envitia Ltd 275 AUM1107

 Commercial in Confidence

A.4 Raster support
All MapLink X11 targets support the display of Raster Maps locally or remotely. The X-

Server depth to use (via the Visual) will be dependent on the X-Server and the

applications use of colour.

The X11 MapLink runtime supports TIFF, PNG and JPEG formats generated by MapLink

Studio (not all combinations of these formats are supported).

Raster datasets from MapLink Studio may be configured to output at a particular bit-

depth and for 8-bit images, the number of colours used by the image may be specified.

Note: that the default is 24-bit (Please refer to the MapLink Studio help).

Rasters which contain an alpha channel will only be displayed correctly when using X

servers that support XRender 0.6 or later.

A.5 Holed Polygons
Vector Maps can be generated from MapLink Studio with holed polygons or without holes

by using key-holing.

Using key-holing means that the drawing of holed polygons is a lot less complex and

more efficient. Therefore, this is the recommended approach on X11 for performance

reasons alone.

The only reason for not using this approach is if a polygon edge line style is required to

be displayed as this will show the keyhole construction.

Note: VxWorks target Envitia uses for testing does not support drawing of holed

polygons.

Commercial in Confidence

 Developers Guide UNIX/Linux/VxWorks (X11)

© 2021 Envitia Ltd 276 AUM1107

 Commercial in Confidence

A.6 APP-6A and 2525B Symbology
MapLink provides the capability to display many APP6A and 2525B symbols through two

classes (TSLAPP6AHelper & TSLAPP6ASymbol).

MapLink provides two configuration files, app6aConfig.csv and 2525bConfig.csv in the

config directory of your MapLink installation. Applications should pass the full path to

one of these files depending on which set of symbology is desired.

In addition to these configurations the alternate symbol file ‘tslsymbolsAPP6A.dat’ has

been provided. This also includes OTHT-Gold symbols. Any application using APP-6A or

2525B icons should load this symbols file. It is acceptable simply to load it using

‘setupSymbols’ after calling ‘loadStandardConfig’. See the Windows APP-6A sample.

A.7 Stroked Linestyles
Stroked linestyles are implemented by an extension shared library

(ttlclsstrk.so/sl/o). The shared library is written specifically for the target platform.

The file tsllinestyle.dat contains many stroked linestyle definitions, an example of a

stroked linestyle is shown below:

1000;ttlclsstrk;My Custom Line;MyCustomLineStyleTag;C[(-1,-1,-1),4]U[0,-

2]D[5,0]D[5,0]BC[(-1,-1,-1),2]U[0,1]D[5,0]D[5,0]D[4,0]

The above line is broken down as follows:

StyleID;typeOrCustomDLLName;Textual comment displayed in feature book, no

semi-colons allowed;DLL specific information

For the ttlclsstrk.so/sl/dll (DLL) which implements this type of line, the DLL

specific information is:

UniqueTag;CommandString

The CommandString is a chain of

C[(R,G,B),W] colour and width, RGB obvious, W width (width <= 0 is set to 1

pixel). If R, G and B are all -1, then colour defined by feature book

is used.

D[x,y] Pen down, line to (currentPositionX + x, currentPositionY + y)

U[x,y] Pen up, move to (currentPositionX + x, currentPositionY + y)

B Bend Point. This is where we can effectively start a new line

segment.

Where:

Pen Down means place the drawing point on the paper and draw to the specified

position from the current position.

Pen Up means raise the drawing point off the paper and move to the specified

position from the current position.

All moves are relative to the current position.

The easiest approach when creating or modifying a Stroked Linestyle is to use a pen and

a piece of graph paper, recording exactly how you draw the line (pen up, pen down,

colour, amount moved).

So for 'D[5,0]U[5,0]D[5,0]', you get the following simple line:

‘----- -----‘

Where:

Commercial in Confidence

 Developers Guide UNIX/Linux/VxWorks (X11)

© 2021 Envitia Ltd 277 AUM1107

 Commercial in Confidence

 - represents pen colour being drawn (Pen Down) as a solid line, but here

represented as dashes to show the amount of movement of the Pen.

space represents pen colour not being drawn (Pen Up)

The start point of your line is always at position [0, 0].

In the above simple line at the end of the sequence the current drawing position is [0,

15].

So if you wanted to return to [0, 0], you would add 'U[0,-15]' to the line definition.

Please note the following:

• When drawing a custom linestyle Maplink uses the horizontal axis where

y=0, as the middle of the line.

• Progress has to be made in the x-axis.

• The line thickness is specified in pixels. So a line thickness of three will be

drawn in a similar way that Windows/X11 will draw a solid line of thickness

3.

• Line segments are drawn with a round end cap on Windows. On X11 line

segments are drawn with CapButt and JoinMiter.

• You can also increase the number of 'B's to improve the ability of the

customline style to follow the draw points.

In general 'B' points must occur when the y-axis is at 0. If you make

changes to a linestyle check the changes using a relatively complex map

or drawing.

• Custom linestyles will have an impact on drawing performance. The more

complex a linestyle the larger the impact on performance.

A.8 X11 Error Handlers
If you define Error handlers by calling XSetErrorHandler, then you need to call any

error handlers already defined (XSetErrorHandler returns the previous error handler).

The Raster drawing shared library uses this error handler to detect problems when using

shared memory (XShm). The MapLink3D optional SDK also hooks into the X error

handling to figure out if it can use the XShm extension.

You should setup the X error handlers before you call MapLink or MapLink will call the

default handlers if it does not handle the errors it-self. MapLink will not call any error

handlers if it handles the errors itself.

It is possible to disable the setting up of the Error handlers by setting of the environment

variable TTL_GDK_SHM_OFF.

Commercial in Confidence

 Vector and Raster Data Format Support

© 2021 Envitia Ltd 278 AUM1107

 Commercial in Confidence

App B Vector and Raster Data Format Support

The list of data formats supported by MapLink Pro Studio or runtime SDKs is constantly

being expanded. The following sections describe some of the formats currently

supported at the time of writing.

B.1 Vector Datasets

Data Format
Studio

Import

Direct

Import SDK

Other

Runtime

Import

Runtime

Export

DAFIF ✓

DFAD ✓

DXF ✓ ✓

Envitia ASCII ✓

File Geodatabase (FileGDB) ✓ ✓

GDF3 ✓

GeoPackage ✓ ✓

GML2/GML3 ✓ ✓ ✓ ✓

Jeppesen ✓

KML Simple Features 2D ✓ ✓ ✓

MIF/MID ✓ ✓ ✓ ✓

NITF/NSIF ✓ ✓ ✓

OpenStreetMap ✓ ✓

OS MasterMap ✓ ✓ ✓ ✓

OS NTF ✓ ✓ ✓ ✓

OS VectorMap Local ✓ ✓ ✓

OS VectorMap District ✓ ✓ ✓

OS Boundary Line 2000 ✓ ✓

S-57 (Unencrypted ENC &

AML)
✓

✓
✓ ✓

S-57 Encrypted (S-63) ✓

ShapeFiles ✓ ✓ ✓ ✓

US Census TIGER/Line ✓ ✓

VPF (DNC, VMAP, WVS etc.) ✓

Other Vector (e.g. TAB,

Spatialite/SQLite)
✓

✓

Commercial in Confidence

 Vector and Raster Data Format Support

© 2021 Envitia Ltd 279 AUM1107

 Commercial in Confidence

B.2 Raster Datasets

Data Format
Studio

Import

Direct

Import SDK

Other

Runtime

Import

Runtime

Export

ADRG ✓ ✓

ARCS Chart (Unencrypted) ✓

ASRP ✓ ✓ ✓

BSB Nautical Chart Format ✓ ✓

CADRG/CIB ✓ ✓ ✓ ✓

CRP ✓

ECRG ✓ ✓

ECW ✓

GeoPackage ✓ ✓

Geospatial PDF ✓ ✓

GeoTIFF ✓ ✓ ✓

JPEG ✓ ✓

JPEG2000 ✓ ✓

MrSID ✓ ✓

NITF/NSIF ✓ ✓ ✓

USRP ✓ ✓

Other Raster (e.g. IMG, PNG

etc.)
✓

✓

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 280 AUM1107

 Commercial in Confidence

App C Deprecated SDKs

C.1 3D SDK

Envitia provide an integration to osgEarth, including display of symbology and

draping of all MapLink Pro layers.

Please contact support@envitia.com or your sales representative for additional

information.

The 3D SDK incorporates the advantages of 3D terrain data with existing MapLink maps

to create a fully immersive environment for reviewing and exploring. Built to extend and

strengthen the MapLink family of tools, the 3D SDK offers all of the advantages of the

other components, but in a 3D environment.

Figure 28 3D Globe with US States Extruded as polygons.

C.1.1 Library Usage and Configuration

As with many of the MapLink SDKs, the 3D SDK comes in 2 different flavours. It should

be noted that the library to be linked with should be determined by the Core SDK library

that you are using within your application. For example, if you are using the Release

mode, DLL version of the Core SDK (MapLink64.lib) then you must also use the

equivalent 3D SDK library (MapLink3D64.lib) and one or more OpenGL libraries.

MapLink3D64.lib

Release mode, DLL version.

Uses Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Your application must also link the
MapLink CoreSDK library MapLink64.lib
and the OpenGL library opengl32.lib.

MapLink3D64d.lib

Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Your application must also link the MapLink
CoreSDK library MapLink64d.lib and the
OpenGL library opengl32.lib.

No redistributable run-time available.

mailto:support@envitia.com

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 281 AUM1107

 Commercial in Confidence

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for
a list of run-time dependencies when
redistributing.

Where X.Y is the version of MapLink you
are deploying.

KEYED : Development machines only.

C.1.2 Migrating from 2D to 3D

The MapLink 3D SDK is designed to be completely compatible with the 2D Core SDK and

this makes migration very easy. It holds true to many of the Core SDK concepts such as

the Document/View model of data being loaded on to a data layer, which are in turn

loaded onto a drawing surface.

Another core MapLink concept that is continued in the 3D SDK is the passivity of the

library. This greatly increases the flexibility of MapLink but like for the core SDK means

that relevant events must be managed by the application and passed onto the 3D

drawing surface.

Introduced with this SDK are a number of new data layers, each deriving from the base

3D data layer, TSL3DDataLayer. An example of such a layer is the

TSL3DStandardDataLayer for 3D geometric entities which is the 3D equivalent to the

TSLStandardDataLayer for 2D geometry. These new data layers, along with any

necessary 2D data layers, should be attached to a derivative of the 3D drawing surface

base class TSL3DDrawingSurface, such as TSL3DWinGLSurface for Windows.

C.1.3 The 3D Coordinate Space

All positions in the MapLink 3D world are specified in geodetic coordinates; latitude,

longitude and altitude above the surface of the earth. It is possible to perform geodetic

to geocentric conversions and the reverse using the TSL3DDrawingSurface where the

geocentric coordinates x, y, z are from the centre of the earth and their unit is metres.

Geodetic coordinates are also wrapped around the earth if they are specified outside of

the coordinate space, such as passing over the poles or international data line.

Altitude can also be specified in a number of different ways using the

TSL3DAltitudeType enum. It can be equated from the mean sea level or from the

height above ground level at that point. The height above ground level can also be

altered using a range of options to deduce the exact height to use at that point from the

terrain data.

It is important to note that as bounding boxes of entities and entity sets are specified in

geodetic coordinates, it is difficult to manipulate these with reference to the object they

were calculated from. The TSL3DHelper class provides several helper functions to

manipulate a TSL3DBoundingBox object, such as the ability to rotate, scale and translate

them.

C.1.4 Threading

The 3D Drawing Surface uses a background thread for rendering of the 2D layers.

As such you should review the contents of section 30, in particular sections 30.5.4,

30.5.6 and 30.9.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 282 AUM1107

 Commercial in Confidence

C.1.5 Walkthrough 5 – Your First 3D Application

If you are familiar with the walkthroughs for the Core SDK then this tutorial might seem

basic and could be run through quickly concentrating on the information that appears

inside the boxes.

C.1.5.1 Skeleton Application

Please note that the Wizards are not available for Visual Studio 2015, see

section 3.2.

The starting point for this is an MFC Application Wizard generated executable. It can be

either an SDI or MDI application, although MDI is not recommended. The example code

here will be based upon an SDI application.

C.1.5.2 Configure Project Properties

Once created, build your skeleton application to ensure it compiles and links. You then

need to set up the Project Properties according to the version of the MapLink libraries

you wish to use with the corresponding 3D SDK library. These are described in sections

5.1 and C.1.1.

In the x64 Debug configuration make the following checks and modifications to the Project
Properties:

In ‘C/C++’, ‘Code Generation’ category, check that the run-time library is “Multi-Threaded

Debug DLL”

In ‘C/C++’, ‘General’ category, add the MapLink include directory as an additional include path,

e.g.

 “C:\Program Files\Envitia\MapLink Pro\X.Y\include”

In the ‘Linker’, ‘Input’ category, add MapLink64d.lib and MapLink3D64d.lib as object/library

modules and in the ‘Linker’, ‘General’ category add the MapLink lib64 directory as an additional

library path, e.g.

“C:\Program Files\Envitia\MapLink Pro\X.Y\lib64”

Make the same changes to the x64 Release configuration, except link against MapLink64.lib

and MapLink3D64.lib instead.

Add #include “MapLink.h” and #include “MapLink3D.h” to relevant files. In this

example, just add it into stdafx.h to keep things simple.

Note: X.Y is the version of MapLink you are using.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 283 AUM1107

 Commercial in Confidence

C.1.5.3 Initialisation and Clean Up

The configuration files for MapLink are usually only loaded once per execution run using

static methods of TSLDrawingSurface. In an MFC application, these are normally loaded

during the InitInstance method of the Application object. The simplest way is to tell

MapLink to load all standard configuration files from a particular directory. If no

directory is specified, then MapLink will assume that a full MapLink installation has taken

place and will attempt to load from there.

Once MapLink has been initialised, it needs to be cleaned up when the application exits,

otherwise Visual Studio will report numerous “leaks” which are in fact memory currently

in use when the application exits. This should be done in the ExitInstance method of

the App class. You will need to use the class Properties Overrides to add this method

since the MFC Application Wizard doesn’t add it by default. Alternatively, in Single

Document applications, it may be called in the destructor of the View or Document class.

In the InitInstance method of the App object, add a call to

TSLDrawingSurface::loadStandardConfig. This should be done before the Document

Template is instantiated.

You should be careful to check for, and report errors at this stage by using the methods supplied
on the TSLThreadedErrorStack utility class.

const char * configDirPath = NULL ; // Replace if deployed

// Full path and filename to the file tsltransforms.dat

const char * transformsFile = NULL; // Replace if deployed

TSLThreadedErrorStack::clear() ;

TSLDrawingSurface::loadStandardConfig(configDirPath) ;

// Required for draped polygons.

TSLCoordinateSystem::loadCoordinateSystems(transformsFile);

TSLSimpleString msg(“”);

bool anyErrors = TSLThreadedErrorStack::errorString(msg,

 "Initialisation Errors : \n") ;

if (anyErrors)

{

 AfxMessageBox(msg, MB_OK) ;

 exit(0) ;

}

When your application is deployed, make configDirPath variable point to the location of your

applications copy of the MapLink config directory. The transformsFile will need to be

handled in a similar manner.

Use Properties, Overrides to create an ExitInstance method on the App object. In this

method, call MapLink to cleanup the configuration file load.

 int CHelloGlobe::ExitInstance()

 {

 TSLDrawingSurface::cleanup() ;

 return CWinApp::ExitInstance();

 }

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 284 AUM1107

 Commercial in Confidence

If you are using the DLL versions of the MapLink libraries, please note the discussion of

memory leaks in section 5.1.2.

C.1.5.4 Managing the Document

In terms of the Document/View architecture, the Document contains one or more

MapLink Data Layers. This is where using the 3D SDK differs greatly from the 2D, for it

offers a number of new Data Layers. For the purposes of this example application

however, we shall restrict this to a single TSLMapDataLayer.

In the private section of the Document, declare a bool and a pointer to a TSLMapDataLayer

object. The bool should be constructed to false, and the object should be constructed in the

document constructor and then destroyed in the destructor:

 CHelloGlobeDoc::CHelloGlobeDoc () : m_newMap(false)

 {

 m_mapDataLayer = new TSLMapDataLayer() ;

 }

 CHelloGlobeDoc::~CHelloGlobeDoc ()

 {

 if (m_mapDataLayer)

 {

 m_mapDataLayer->destroy() ;

 m_mapDataLayer = NULL ;

 }

 }

Use Properties, Overrides to create an OnOpenDocument handler and in this method,

set you bool flag to true and store the filename in a member variable. Create a

private method loadMap that takes no parameters and returns void

BOOL MapLink3DSimpleDoc::OnOpenDocument(LPCTSTR lpszPathName)

{

 if (!CDocument::OnOpenDocument(lpszPathName)) return FALSE;

 m_newMap = true ;

 m_mapName = lpszPathName ;

 return TRUE;

}

void MapLink3DSimpleDoc::loadMap()

{

 if (!m_newMap) return ;

 m_mapDataLayer->removeData() ;

 TSLThreadedErrorStack::clear() ;

 // Load map and then display any errors that have occurred

 m_mapDataLayer->loadData(m_mapName.c_str()) ;

 TSLSimpleString msg(“”);

 bool anyErrors = TSLThreadedErrorStack::errorString(msg,

"Cannot load map\n") ;

 if (msg)

 AfxMessageBox(msg, MB_ICONERROR) ;

 else

 m_mapDataLayer->notifyChanged() ;

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 285 AUM1107

 Commercial in Confidence

C.1.5.5 Managing the View

In terms of the Document/View architecture, the View contains an instance of a

TSL3DDrawingSurface derived object – TSL3DWinGLSurface on Windows platforms,

TSL3DX11GLSurface on X11 platforms. This is the only significant platform-specific

difference. In an MFC application, this is usually instantiated in the OnInitialUpdate

method since the associated window doesn’t exist in the OnCreate event or in the View

constructor.

In the private section of the View, declare a pointer to a TSL3DWinGLSurface object. This

should be initialised to NULL in the View constructor.

Use Properties, Overrides to create an OnInitialUpdate handler and in this method, check

to see if a Drawing Surface exists and create one if necessary. You can optionally also set a
sky, wire frame and solid colours as well as drape a picture over the earth, as is done below.
You will need a private member variable of type CString, called m_backdrop to allow you to

do this. You should also tell MapLink about the default size of the window.

 void CHelloGlobeView::OnInitialUpdate()

 {

 CView::OnInitialUpdate();

 if (!m_drawingSurface)

 {

 CRect rect ;

 GetClientRect(&rect) ;

 // Create the drawing surface

 m_drawingSurface = new TSL3DWinGLSurface (m_hWnd, false);

 // Give the 'sky' a colour!

 static const TSLStyleID skyColourIndex(4);

 m_drawingSurface->setBackgroundColour(skyColourIndex);

 static int const wireframeColourIndex(181);

 static int const solidColourIndex(60);

 m_backdrop = TSLUtilityFunctions::getMapLinkHome();

 m_backdrop += "/config/earth.png";

 // Set the bitmap to display over the terrain plus colours

 // for solid-backdrop and wireframe rendering.

 m_drawingSurface->setTerrainRendering(wireframeColourIndex,

 solidColourIndex, m_backdrop);

 // Notify surface what size the window is

 m_drawingSurface->wndResize(0, 0, rect.Width(), rect.Height());

 // The following line is discussed in 12.5.9

 m_drawingSurface->setRenderingCallback(renderingCallback, this);

 }

 }

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 286 AUM1107

 Commercial in Confidence

C.1.5.6 Binding Layers and Drawing Surfaces

Once both Document and View are ready available, you need to attach the Data Layers

to the Drawing Surface so that MapLink can display it.

The recommended approach to this is to create an addToSurface method on the

Document, which calls the underlying MapLink routines to add the Document’s Data

Layers to the Views Drawing Surface. This structure avoids the View knowing the

contents of Document in any detail and is equally applicable to both Single and Multiple

Document Interfaces.

The addToSurface method should be called in the OnInitialUpdate method of the

View, just after the Drawing Surface has been created. In MFC applications, it is not

usually necessary to have an equivalent deleteFromSurface method since MFC calls

DeleteContents instead. If you are adding more than one Data Layer to the Drawing

Surface, each must have a unique name.

In the destructor of the View, destroy the Drawing Surface if it exists.

 CHelloGlobeView::~CHelloGlobeView()

 {

 if (m_drawingSurface)

 {

 m_drawingSurface->destroy() ;

 m_drawingSurface = NULL ;

 }

 }

Create a public addToSurface method in the Document that takes a TSLDrawingSurface

pointer as a parameter. In this, add the Document’s Data Layer to the specified Drawing
Surface.

 bool CHelloGlobeDoc::addToSurface(TSL3DWinGLSurface *drawingSurface)

 {

 if (!m_mapDataLayer || !drawingSurface)

 return false ;

 loadMap(); // load the map.

 return drawingSurface->addDataLayer(m_mapDataLayer, "map") ;

 }

Call this method in the View’s OnInitialUpdate method, after the Drawing Surface has been

created. At this point, it is also appropriate to define the initial visible area. Here we call the
reset method of the TSL3DCamera, before providing a position for the camera and the

direction in which it is pointing. The workings of TSL3DCamera are discussed in 12.8.

 if (GetDocument()->addToSurface(m_drawingSurface))

 {

 m_drawingSurface->camera()->reset();

 m_drawingSurface->camera()->moveTo(50.0, 0.0, 10000000.0,

TSL3DCameraMoveActionNone) ;

 m_drawingSurface->camera()->lookAt(50.0, -5.0, 0.0, false) ;

 }

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 287 AUM1107

 Commercial in Confidence

Note that MapLink automatically takes care of Data Layer and Drawing Surface

separation when either is destroyed.

C.1.5.7 Handling Resize Events

Since MapLink is passive, the application needs to handle relevant events and pass the

information onto MapLink. Most applications will only need to handle the window resize

and expose or paint events.

After handling a resize event, Windows or X will usually post a paint message so there is

no need to force a redraw in the resize handler.

Handling resize events differs from the 2D to the 3D as we are not given the option of

providing a flag to indicate an anchor point that the resizing takes place around. This is

because the TSL3DCamera takes care of this control and is discussed in section 12.8.

C.1.5.8 Handling Paint Events

A paint event can be triggered for many reasons, some of which will only want to redraw

part of the window. Under these circumstances, Windows will set up a Clip Box to define

the part that needs redrawing. To improve performance it is best to only redraw that

part. It is most efficient to pass the required Device Unit extent to the Drawing Surface.

Use Properties, Messages to create a WM_SIZE handler on the View class since it is not there

by default. In this method, check to see if a Drawing Surface exists and if so, pass the new
corners of the window to the Drawing Surface using the wndResize method. This example will

also inhibit an automatic redraw and ask MapLink to maintain the aspect ratio locking the top
left corner of the visible map area.

 void CHelloGlobeView::OnSize(UINT nType, int cx, int cy)

 {

 CView::OnSize(nType, cx, cy);

 if (m_drawingSurface)

 {

 m_drawingSurface->wndResize(0, 0, cx, cy, false);

 }

 }

In the OnDraw method of the View, query the required redraw area and pass it to the

Drawing Surface, asking MapLink to clear the background first.

 void CHelloGlobeView::OnDraw(CDC* pDC)

 {

 if (m_drawingSurface)

 {

 RECT rect ;

 if (pDC->GetClipBox(&rect) == NULLREGION)

 GetClientRect(&rect) ;

 m_drawingSurface->drawDU(rect.left, rect.bottom,

 rect.right, rect.top, true) ;

 }

 }

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 288 AUM1107

 Commercial in Confidence

To create a 3D application you must also provide a TSL3DRenderingCallback triggered

when draped data is ready to be rendered. This is a static method that returns a void

and takes a void*.

Now build the program, run it and load one of the sample maps.

C.1.5.9 Reducing Flicker and Improving Performance

So far, the application is not making use of MapLink performance optimisations and the

display will appear to flicker when it is redrawn. There are two reasons for this. Firstly,

MapLink is drawing directly to the window. Secondly, both MapLink and Windows are

clearing the display prior to the redraw. In depth discussion of these problems and their

solutions may be found in section 12.5. In the meantime, here are a couple of quick

fixes to reduce your eyestrain! Please be aware this will only work for SDI applications

and not for MDI applications.

To solve the first issue, a single method call should be added when the Drawing Surface

is created to make it buffered. This will also improve performance on expose events that

are not due to the visible map area changing.

To solve the second issue, you should inhibit Windows from clearing the window.

The inhibition of the WM_ERASEBKGND message is appropriate since MapLink is drawing to

the entire window. If MapLink were drawing to only part of the window then it may be

necessary for the application to erase the areas that MapLink is not rendering into.

C.1.5.10 3D Standard Data Layers

The TSL3DStandardDataLayer class is a Data Layer, just like the other derivatives of

TSLDataLayer that have been discussed in this developer guide such as the 2D

equivalent TSLStandardDataLayer. As such, it may be created and added to one or

more Drawing Surfaces from whence the contents are displayed. It is a specialist data

layer for the handling of non-map 3D data, providing the ability to load, create,

manipulate and save non-map 3D data as well as a number of miscellaneous functions.

Create a new static method in the View with the following implementation:

void Simple3DInteractionView::renderingCallback(void * arg,

 int pendingTextures)

{

 Simple3DInteractionView * view = (Simple3DInteractionView *)arg ;

 if (view->m_hWnd)

 {

 view->Invalidate() ;

 }

}

Use Properties, Messages to add a View handler for the WM_ERASEBKGND message. Return

TRUE from this method to indicate to windows that the application will erase the background.

 BOOL CHelloGlobeView::OnEraseBkgnd(CDC* pDC)

 {

 return TRUE ;

 }

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 289 AUM1107

 Commercial in Confidence

In the same way that a TSLStandardDataLayer contains instances of TSLEntity derived

objects and the TSLObjectDataLayer contains instances of TSLDynamicDataObject

derived objects, the TSL3DStandardDataLayer contains instances of TSL3DEntity

derived objects.

C.1.6 3D Entities

A further 2D Core SDK concept that has been continued in the 3D SDK is the use of

geometry Entities. All geometric objects in MapLink can be thought of as Entities,

derivatives of TSLEntity in the 2D and of TSL3DEntity in the 3D.

Figure 29 3D Entity Hierarchy

In the 3D SDK all entities with the exception of user geometry have a number of

properties including:

• A bounding box defined in 3D space

• A set of rendering attributes that specify how the entity appears.

• One or more TSL3DCoord objects that define the position and in most

cases the orientation and size of the entity.

C.1.6.1 TSL3DEntity

This is the base class for all 3D geometric primitives and gives access to the methods

and properties common to all its derivatives. These include the ability to query the type

of derivative an entity is, the bounding box, the centre of the object and the distance

this entity is from a specific point. Other operations perform movement and scaling

functions and equality comparisons.

C.1.6.2 TSL3DModel

This class defines a common interface to 3D models that can be loaded via plug-ins. The

model to draw is determined by setting the TSLRenderingAttributeModelStyle

rendering attribute to an index from tslmodels.dat.

Multiple Levels of Detail can be set for a model to allow for progressively lower polygon-

count models to be used when the model is further away from the camera.

C.1.6.3 TSL3DTriangle and TSL3DQuad

Both of these shapes are basically restricted types of polygon; they are limited to having

3 or 4 point and may not have inners. They can be created like the other multipoint 3D

entities by passing a TSL3DCoordSet or uniquely they can be created by passing the

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 290 AUM1107

 Commercial in Confidence

individual TSL3DCoord objects. Also like other multipoint geometric shapes, their area

and perimeter can be queried. A quad specifically must be non-complex, meaning there

are no intersecting edges, and all points must lie in a plane.

The order of point specification is anti-clockwise.

C.1.6.4 TSL3DTriangleFan and TSL3DTriangleStrip

These 3D geometric objects provide a quick way of creating multiple adjoining triangles

that use the same rendering attributes. Both are created from closed, filled, 3 point

triangles and behave similarly.

For a TSL3DTriangleFan, the first point defines the common centre point of the fan.

The first three points of the fan define a 3D triangle. Each subsequent point defines a

triangle made up of the common centre point, the previous point and the new point. For

a TSL3DTriangleStrip, the first three points of the strip also define a 3D triangle. Each

subsequent point defines a triangle made up of the new point and the previous two

points

C.1.6.5 TSL3DQuadStrip

This is the 4 point version of TSL3DTriangleStrip and is formed in much the same way;

each pair of added points forms a quad with the previous pair. Each contained 3D quad

must be non-complex. All points of each contained 3D quad must lie in a plane.

C.1.6.6 TSL3DPolyline

This is the 3D version of TSLPolyline which always has length and may or may not

have area depending upon whether the polyline is closed. If a polyline is closed then the

first and last points are joined by a vertex, except if they exist at the same 3D position

in which case the polyline is already closed. A closed polyline can therefore be thought of

as being a polygon; the length property becomes the equivalent to its perimeter and it

now has the concept of area.

A polyline must have at least two points, although a closed polyline should logically have

at least three, but other than that there are no limitations placed upon the coordinates.

C.1.6.7 TSL3DPolygon

A TSL3DPolygon is a closed, filled, planar feature with three or more constituent points.

It always has a perimeter length property and an area, but due to it being planar it can

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 291 AUM1107

 Commercial in Confidence

never have volume. It must be non-complex, meaning its edges must not cross,

although they may touch.

A 3D polygon may also have one or more holes also known as inners, with the main

polygon also being known as the outer. These inners are basically cut out sections of the

polygon which may not touch or cross the outer, nor touch or cross any other hole. The

outer nor inners may have consecutive duplicate points.

Draped Polygons, including extruded, have a number of limitations. The applicable

limitations are listed in the Release Notes.

For draped polygons to work TSLCoordinateSystem::loadCoordinateSystems() must

be called before the 3D SDK is used.

C.1.6.8 Extruded 2D Primitives

These extruded shapes, TSLExtuded2DPolygon, TSLExtruded2DPolyline and

TSLExtruded2DRectangle consist of a MapLink 2D shape that has been given an

extrusion and placed at a set altitude in a 3D world. They are created around the 3D

shape, which can be queried or changed for another without destroying the extruded

shape. These shapes have identical properties to their 2D counterparts, most of which

are accessible by first querying this object for its 2D object.

C.1.6.9 TSL3DEntitySet

This is a collection of other 3D Entities, but is also an entity itself so can contain other

Entity Sets and thus be hierarchical. It has no geometric attributes of its own, but

inherits its bounding box as the union of its children’s. Like the 2D version of this object,

the TSL3DEntitySet differs from the OpenGIS specification of an entity collection by

allowing different types of entity to be contained.

C.1.6.10 3D User Geometry

This is the 3D version of user geometry.

A 3D user geometry entity allows the user to create custom-drawn geometry upon 3D

standard data layers. User geometry can be saved to and loaded from TMF files. A piece

of 3D user geometry is composed of two parts, the entity (an instance of

TSL3DUserGeometryEntity, managed by MapLink) and the client (an instance derived

from TSL3DClientUserGeometryEntity, managed by the user).

C.1.6.11 TSL3DUserGeometryEntity

This is the 3D version of TSLUserGeometryEntity.

Instances of TSL3DUserGeometryEntity can be added to 3D standard data layers, and

are allocated and deallocated by MapLink. Create instances by calling

TSL3DUserGeometryEntity::create, or by calling create3DUserGeometry on a

TSL3DEntitySet. The client of a 3D user geometry entity can be set and retrieved by

calling setClientUserGeometryEntity and getClientUserGeometryEntity,

respectively.

create, create3DUserGeometry, setClientUserGeometryEntity and load callback

functions all provide a takeOwnership flag. If true, then MapLink will automatically

delete the client if it is replaced with setClientUserGeometryEntity or when the entity

is destroyed. If false, the user will have to destroy the client. This must be false if the

user’s code is compiled with a different compiler or runtime library version to MapLink.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 292 AUM1107

 Commercial in Confidence

C.1.6.12 TSL3DClientUserGeometryEntity

This is the 3D version of TSLClientUserGeometryEntity.

The user creates clients by deriving from TSL3DClientUserGeometryEntity, and

creating their own instances of these subclasses. A client can then be attached to an

entity as explained above.

At a minimum, the user must override the abstract draw and centre methods. It is

however strongly recommended that boundingSphereRadius is also implemented within

the client. In conjunction with the position returned from centre, the return value from

boundingSphereRadius is used to perform view frustum culling of user geometry. The

user should therefore ensure that the calculated bounding sphere radius is accurate for

the entity being rendered in order to avoid user entities that are visible from being

incorrectly culled.

Unlike 2D geometry, view frustum culling is performed on TSL3DEntitySets as well as

individual entities. If the size of the user geometry changes it is necessary to manually

update the bounding boxes of its parent TSL3DEntitySet as the previous bounding box

may no longer be correct. This is done by calling updateBoundingBox on the

TSL3DEntitySet that contains the TSLUserGeometryEntity object associated with the

client. This entity set can easily be retrieved by using the parent method of the
TSLUserGeometryEntity.

Within the draw function, the entity will be positioned such that (0,0,0) in model space is

at the location returned by the user's centre method with the positive Z-axis

perpendicular to the surface of the earth (ignoring terrain) at that point. This means that

within a draw each user geometry object operates within its own local coordinate

system, the units of which are metres. The exception to this is any drawing performed

through methods on the TSL3DRenderingInterface that accept positions using

TSL3DCoords, TSL3DCoordSets or a TSL3DEntity. Objects rendered in this fashion are

drawn in the same positions as they would be if drawn from outside user geometry.

The OpenGL state on entry to draw is dependent on the entities that have been drawn so

far in the current frame, and therefore will differ depending on the view of the

application. The user should therefore make no assumptions about the OpenGL state on

entry to draw other than the following:

• The GL_COLOR_ARRAY, GL_EDGE_FLAG_ARRAY, GL_FOG_COORD_ARRAY,

GL_INDEX_ARRAY and GL_SECONDARY_COLOR_ARRAY client states will never be

enabled.

• The matrix mode for the built-in matrix stack will be GL_MODELVIEW_MATRIX.

Creating and destroying user geometry:

 TSL3DStandardDataLayer* stdLayer = ...;

 TSL3DClientUserGeometryEntity* client = new ...;

 TSL3DUserGeometryEntity* entity = stdLayer->entitySet()->

 create3DUserGeometry(client, false);

 if (!entity)

 ... // handle error

 ...

 entity->destroy();

 delete client; // don’t need this if takesOwnership is true

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 293 AUM1107

 Commercial in Confidence

• The active texture unit will be GL_TEXTURE0, however texturing may be either

enabled or disabled.

• There will be no active program bound.

MapLink internally tracks the OpenGL state in order to avoid redundant state changes.

Therefore care should be taken to reverse any modifications made to the OpenGL state

in before returning from draw as failure to do so may result in incorrect rendering of

subsequent entities. This also applies to any rendering performed through the

TSL3DRenderingInterface. Aside from this restriction the user is free to use any

OpenGL functionality within draw in order to render the entity.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 294 AUM1107

 Commercial in Confidence

Here is an example partial implementation of a user geometry client:

 class SquareClient : public TSL3DClientUserGeometryEntity

 {

 private:

 TSL3DCoord m_centre;

 double m_radius;

 public:

 // Constructor

 SquareClient(TSL3DCoord centre)

 : m_centre(centre)

 , m_radius(sqrt(2000000.0*2000000.0 + 2000000.0*2000000.0))

 {

 }

 // Destructor

 virtual ~SquareClient()

 {

 }

 virtual double boundingSphereRadius () const

 {

 return m_radius;

 }

 virtual const TSL3DCoord& centre () const

 {

 return m_centre;

 }

 // render an orange square

 virtual bool draw (int uniqueSurfaceID,

 TSL3DRenderingInterface* renderingInterface)

 {

 glPushAttrib(GL_ALL_ATTRIB_BITS);

 glPushClientAttrib(GL_CLIENT_ALL_ATTRIB_BITS);

 GLfloat coords[] = { -100000.0f, -100000.0f, 0.0f,

 100000.0f, -100000.0f, 0.0f,

 -100000.0f, 100000.0f, 0.0f,

 100000.0f, 100000.0f, 0.0f };

 glColor4f(1.0f, 0.5f, 0.0f, 1.0f);

 glDisable(GL_TEXTURE_2D);

 glDisable(GL_CULL_FACE);

 glEnableClientState(GL_VERTEX_ARRAY);

 glDisableClientState(GL_TEXTURE_COORD_ARRAY);

 glDisableClientState(GL_INDEX_ARRAY);

 glVertexPointer(3, GL_FLOAT, 3 * sizeof(GLfloat), coords);

 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

 glPopAttrib();

 glPopClientAttrib();

 return true;

 }

 // stream out the polygon

 virtual int save (TSLofstream& stream)

 {

 ...

 return SQUARE_USER_GEOMETRY_ID;

 }

 };

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 295 AUM1107

 Commercial in Confidence

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 296 AUM1107

 Commercial in Confidence

C.1.6.13 Loading and saving 3D user geometry

The process is almost identical to that of 2D user geometry.

If the user wants their 3D user geometry classes to be saved and loaded along with

other types of geometry, they need to override the save method on the client, and to

provide a load callback function to the static method

TSL3DUserGeometryEntity::registerUserGeometryClientLoadCallback.

The save method on the client should return a positive integer to identify the type of 3D

user geometry. These numbers should be unique as they can be passed to any

registered load callback function. It is suggested that the user publish and track these

identifiers.

It is also suggested that the user saves, along with any geometry data, a company

identifier, a byte-order mark, a geometry type ID and a version number.

To register a load callback function, a pointer to it must be passed to

TSL3DUserGeometryEntity::registerUserGeometryClientLoadCallback. The pointer

should have type TSL3DUserGeometryLoadCallback (which is a function pointer

typedef). The pointer will be added to a list; when user geometry is loaded, each

function on the list will be called until one returns non-NULL.

C.1.7 3D Custom Data Layers

It is possible to introduce your own custom drawn data to the MapLink 3D drawing

surface using the TSL3DCustomDataLayer class. To accomplish this you must add an

instance of this class to your drawing surface and attach to it your own derivative of the

abstract class TSL3DClientCustomDataLayer.

Setting a load callback function:

 TSL3DUserGeometryEntity::

 registerUserGeometryClientLoadCallback(loadUserGeometryCallback);

Here is a skeleton load callback function:

 static TSL3DClientUserGeometryEntity* loadUserGeometryCallback(

 TSLifstream& stream,

 int userGeometryID,

 bool& assumeOwnership)

 {

 // whether returned entities will be freed by MapLink:

 assumeOwnership = ...;

 switch (userGeometryID)

 {

 case SQUARE_USER_GEOMETRY_ID:

 ... // stream in client and return it

 ... // etc

 default:

 return NULL;

 }

 }

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 297 AUM1107

 Commercial in Confidence

Your derivative of the TSL3DClientCustomDataLayer class will need to override the pure

virtual draw methods, which provide an interface class through which a number of useful

functions such as querying if a point or bounding box falls within the viewing volume and

coordinate conversion functions can be performed.

C.1.8 Using the Camera

The TSL3DCamera class provides the ability to manipulate the users’ view of the drawing

surface. It has three main properties: its position, orientation and normal. The

orientation is also known as its lookAt position whereas the normal is perpendicular to

this and defines the direction from the centre to the top of the view.

The camera also provides the ability to specify its angle of view, also known as its field

of view. This is by default 45 degrees. The camera also allows the user to set the altitude

at which the horizon will appear horizontal in the field of view. This altitude should be

set to a value at which the horizon has a meaningful definition (e.g. 1000 metres).

C.1.9 Integration with Other OpenGL Applications
It is sometimes desirable to use MapLink in conjunction with user interface toolkits or

other libraries that perform their own OpenGL context creation. Depending on the

constructor used, the MapLink 3D drawing surfaces can either create their own OpenGL

context or use an existing context created externally. When using a drawing surface in

this fashion, MapLink can be instructed not to perform buffer swaps through the

swapBuffersManually constructor argument, leaving the application in control of when

this occurs.

More information can be found in the API documentation for each platform's drawing

surface (TSLWinGLSurface for Windows, TSL3DX11GLSurface for X11 systems).

C.1.10 Creating a 3D Model Plug-in

MapLink provides an example plug-in named ttl3DS which is capable of loading files

produced by 3D Studio Max. The source code to this plug-in can be found in the Samples

directory of your MapLink installation.

Model plug-ins are loaded at runtime as models that use them are drawn, and are

unloaded when those models are deleted. The plug-in that is used to load and draw a

particular model is defined by the tslmodels.dat file that is passed to

TSL3DDrawingSurface::setupModels(). A part of the entry for each model is a plug-in

specific string which allows for custom options to be defined for each model and plug-in.

New models should be added to this file and given the next available unique index. The

count of the number of entries in the file should also be updated. A complete description

of the format of this file can be found in the tslmodels.dat file provided in the config

directory of your MapLink installation.

C.1.10.1 The Structure of a Plug-in

All plug-ins must be compiled as DLL/shared objects, and must declare a class that

inherits from TSL3DCustomModel. An instance of this class will be created for each unique

model defined in tslmodels.dat that uses this plug-in. In addition to this the

DLL/shared object must export the following “C” methods:

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 298 AUM1107

 Commercial in Confidence

When a model is required the getModel() method will be invoked with the index from

tslmodels.dat of the model, the full path to the model file and the plug-in specific

configuration string. This method will only be invoked once for each model, and should

return an instance of your derived TSL3DCustomModel class that is responsible for

drawing this model.

When a model is no longer required the deleteModel() method will be invoked, with the

object returned from the relevant getModel() call passed in as the parameter for

cleanup by the plug-in.

C.1.10.2 Drawing a Model

A plug-in cannot make any assumptions about the state of the rendering engine when

drawing, and should always reset any state changes it makes back to what they were

originally before the draw() method returns.

The model itself should be drawn around 0,0,0 and will be translated to the correct

position by the 3D SDK. Since the draw() method will be invoked frequently for models

that are visible in the application the plug-in should make use of optimisation techniques

such as display lists to ensure that the drawing takes as little time as possible.

Any textures associated with a model can be loaded via the TSL3DTextureLoader utility

class. The loadTexture() method available on this class returns the texture in a format

suitable for passing to the appropriate texture functions used by the type of plug-in, for

example glTexSubImage2D() for OpenGL. If the requested texture size differs from the

actual size of the texture it will be resized to satisfy the request. For more information

see the API class documentation.

C.2 MapLink Application Framework SDK

The MapLink Application Framework (MAF) SDK provides a framework for building

standardised user-interfaces using MapLink components. It provides a large number of

pre-defined user-interface objects together with a notification mechanism for

extern "C" __declspec(dllexport)

 void* getModel(int index,

 const char* filename,

 const char* pluginString);

extern "C" __declspec(dllexport) void deleteModel(void* model);

Storing and resetting rendering state information in OpenGL.

bool N3DSModel::draw(int drawingSurfaceId, double distanceToEye,

 int lodToDraw)

{

 glPushAttrib(GL_ALL_ATTRIB_BITS);

 // Change any required states and draw the model

 glPopAttrib();

 return true;

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 299 AUM1107

 Commercial in Confidence

communicating between them. Editing functionality is provided via the MapLink Editor

MAF SDK.

C.2.1 Library Usage and Configuration

Unlike many of the MapLink SDKs, the Application Framework SDK only comes in 2

flavours – debug and release DLLs.

MapLinkMAF.lib or MapLinkMAF64.lib

Release mode, DLL version.

Uses Multithreaded DLL C++ run-time

library.

Requires TTLDLL preprocessor directive.

Your application must also link the

MapLink CoreSDK library

MapLink.lib/MapLink64.lib.

Refer to the document "MapLink Pro X.Y:

Deployment of End User Applications" for

a list of run-time dependencies when

redistributing.

Where X.Y is the version of MapLink you

are deploying.

MapLinkMAFd.lib or

MapLinkMAF64d.lib

Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-

time library.

Requires TTLDLL preprocessor directive.

Your application must also link the MapLink

CoreSDK library

MapLinkd.lib/MapLink64d.lib.

No redistributable run-time available.

KEYED: Development machines only.

C.2.2 Philosophy

MapLink is a mature product, used in a large number of programs world-wide. At

Envitia, we have observed that there are a core set of windows that are used in most

mapping applications. For example,

• A map window

• A layer tree with legend

• A rendering panel

• A list of items

• An HTML viewer

• A metadata display

• A task panel

The functionality of an application is achieved by adding menus and toolbars which

customise these common windows according to a program’s particular needs.

The MAF provides a set of these windows that we have designed to be as flexible as

possible. You simply include the windows you need into a standard framework, and very

quickly you will have a working framework application which contains basic mapping

functionality but none of the specific operations that your application will require.

What makes the MAF extremely flexible is that, once you have your basic framework in

place, you can add the functionality of your application by dropping in your own Service

Provider plug-ins. Each Service Provider contains a set of Services, each of which can be

thought of as an action that can be triggered from a menu item. The Services provide

the specific functionality of the application.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 300 AUM1107

 Commercial in Confidence

The functionality of the application is therefore contained within the plug-ins as opposed

to being coded in the application itself. The same basic framework with the same

windows can therefore be used to create a multitude of different applications simply by

loading up different sets of Service Providers.

C.2.3 How does it work?

There are five main components that comprise the MAF SDK:

• The Notifications

• The Post Office and Notification Sink

• The UI Objects

• The Drawing Surface and Data Layer Components

• The Service Providers

C.2.3.1 Notifications

Notifications are objects that represent messages that are generated by an application.

MAF provides a rich set of pre-defined notifications whilst also allowing users to derive

their own application-specific types.

User-defined notifications derive from TSLMAFClientNotification. They must provide

an implementation of the type method – this is used to uniquely identify the notification.

All such notifications must use TSLMAFNotificationBaseClient as the base value of all

notifications e.g.

Here is an example if a user-derived notification.

Sending notifications is simple:

typedef enum

{

 CUSTOMNOTIFY_LBDOWN = TSLMAFNotificationBaseClient,

 CUSTOMNOTIFY_RBDOWN

} CustomNotificationType;

class RBDownNotification : public TSLMAFClientNotification

{

public:

 RBDownNotification(CPoint const& pt) : m_pt (pt) {}

 CPoint const& point() const { return m_pt; }

 virtual long type() const { return CUSTOMNOTIFY_RBDOWN; }

private:

 CPoint m_pt;

};

void CTestView::OnRButtonDown(UINT nFlags, CPoint point)

{

 RBDownNotification* notice = new RBDownNotification(point);

 TSLMAFPostOffice::postNotification(notice);

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 301 AUM1107

 Commercial in Confidence

The Post Office will distribute the notification to all registered notification sinks, and

delete the notification object once all registered sinks have processed it.

C.2.3.2 Post Office and Notification Sink

The Post Office is the distribution centre for notifications. It is responsible for delivering

notifications to all registered sinks. If a class wishes to receive notifications, it must

derive from TSLMAFClientNotificationSink. By performing this derivation your class

will automatically be registered with the Post Office so that it receives notifications. If

this is not convenient, then pass a ‘false’ flag in the constructor – this disables automatic

registration. To manually register interest in notifications, the derived class needs to be

wrapped within an instance of TSLMAFCustomNotificationSink and this instance

provided to the method TSLMAFPostOffice::registerNotificationSink.

Notifications can be either posted or sent to the Post Office: the former adds the

notification to the list of pending notifications whilst the latter distributes the notification

immediately to all sinks, thus avoiding the queue.

To process notifications, classes must derive from TSLMAFClientNotificationSink and

provide an implementation of the abstract handleNotification method. For example:

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 302 AUM1107

 Commercial in Confidence

C.2.3.3 UI Objects

These objects represent user-interface elements. They essentially hide the details

concerning the interface element (such as window creation, message routing and

handling, etc) from the application, allowing rapid development of MapLink applications.

MAF provides a rich set of pre-defined UI objects whilst also allowing users to derive

their own application-specific types.

User-defined UI objects must derive from TSLMAFClientUIObject. If they are to

process notifications, then they must also derive from TSLMAFClientNotificationSink.

They must provide an implementation of the create and handle methods – the first

class CMainFrame : public CFrameWnd, public TSLMAFClientNotificationSink

{

public:

 virtual void handleNotification(const TSLMAFNotification* n);

 // ...

private:

 virtual void handleCustomNotification(const TSLMAFClientNotification* n);

};

void CMainFrame::handleNotification(const TSLMAFNotification* n)

{

 switch (n->type()) {

 case TSLMAFNotificationCursorLatLong:

 {// Display the lat/long position in the status bar.

 // You will need to write code to display the information in the

 // status bar.

 TSLMAFCursorLatLongNotification

 const * latLon = (TSLMAFCursorLatLongNotification const*)n;

 m_lat = latLon->latitude();

 m_lon = latLon->longitude();

 break;

 }

 case TSLMAFNotificationClient:

 { // Convert to a client notification.

 TSLMAFClientNotification const* c = TSLMAFNotification::isClient(n);

 handleCustomNotification(c);

 break;

 }

 default:

 break;

 }

}

void CMainFrame::handleCustomNotification(const TSLMAFClientNotification *n)

{

 switch (n->type()) {

 case CUSTOMNOTIFY_LBDOWN:

 {

 // ...

 }

 break;

 case CUSTOMNOTIFY_RBDOWN:

 {

 RBDownNotification const* rb = (RBDownNotification const*)n;

 // ...

 }

 break;

 default:

 break;

 }

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 303 AUM1107

 Commercial in Confidence

method should create the actual interface object (e.g. a CWnd object) and the other

method returns an opaque handle to it.

For example:

C.2.3.4 Drawing Surface and Data Layer Components

These objects provide wrappers for the MapLink drawing surface and data layer

components allowing them to be used within the MAF framework. The wrappers provide

functionality that is not provided by the underlying MapLink libraries. For example, using

class TreeWnd : public CTreeCtrl

{

public:

 bool create(HWND parent, RECT const& rc, unsigned long flags);

 TSLMAFHandle handle() const { return m_hWnd; }

 void handleNotification(const TSLMAFNotification* n);

};

class MessageUIObject : public TSLMAFClientUIObject,

 public TSLMAFClientNotificationSink

{

public:

 virtual TSLMAFHandle create(TSLMAFHandle parent, int x, int y,

 int width, int height, unsigned long flags);

 virtual TSLMAFHandle handle() const;

 virtual void handleNotification(const TSLMAFNotification* n);

 // ...

private:

 TreeWnd* m_wnd; // The actual window.

};

TSLMAFHandle MessageUIObject::create(TSLMAFHandle parent, int x, int y,

 int width, int height, unsigned long flags)

{

 m_wnd = new TreeWnd();

 RECT rc;

 rc.left = x; rc.top = y;

 rc.right = x + width + 1; rc.bottom = y + height + 1;

 if (!m_wnd->create((HWND)parent, rc, flags))

 {

 delete m_wnd;

 m_wnd = 0;

 }

 return handle();

}

TSLMAFHandle MessageUIObject::handle() const

{

 return m_wnd ? m_wnd->handle() : 0;

}

void MessageUIObject::handleNotification(const TSLMAFNotification* n)

{

 if (m_wnd)

 m_wnd->handleNotification(n); // The window does the dirty work.

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 304 AUM1107

 Commercial in Confidence

a TSLMAFSimpleLayer will automatically provide a legend to the layer tree UI object, by

querying the rendering attributes of features within the layer.

For example:

C.2.3.5 Service Providers and Services

A Service Provider is a plug-in component (DLL) that provides one or more Services

(functions) to an application. A Service should provide some sort of well-defined

functionality e.g. ‘Navigate to URL…’, ‘Copy Item…’, ‘Import file…’, etc. An application

can use one or more Service Providers as appropriate.

This architecture is very suitable for designing applications in which different user roles

have different functionality; each role has its own Service Provider providing role-specific

Services, with all common functionality contained within a Service Provider used by all

roles. The appropriate Service Providers are then loaded when the user logs in. It also

makes supporting applications very easy, as the Service Providers, which contain the

functionality of an application, can be deployed without the necessity of upgrading the

framework application.

class DSView : public CView

{

public:

 // ...

 virtual void OnInitialUpdate();

private:

 // This is the MAF (non-editable) drawing surface UI object.

 TSLMAFStandardDrawingSurfaceUIObject* m_uiObject;

};

void DSView::OnInitialUpdate()

{

 CView::OnInitialUpdate();

 if (!m_uiObject)

 {

 CRect rc;

 GetClientRect(rc);

 m_uiObject = new TSLMAFStandardDrawingSurfaceUIObject;

 if (!m_uiObject->create(m_hWnd, rc.left, rc.top,

 rc.Width(), rc.Height(),

 WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS))

 {

 m_uiObject->destroy();

 m_uiObject = NULL;

 return;

 }

 m_uiObject->addStandardInteractionMode(ID_ZOOM,TSLMAFViewModeZoom,true);

 m_uiObject->addStandardInteractionMode(ID_PAN,TSLMAFViewModePan,false);

 m_uiObject->addStandardInteractionMode(ID_GRAB,TSLMAFViewModeGrab,false);

 }

 CTestDoc* doc = GetDocument();

 TSLMapDataLayer* mapDataLayer = doc->getMapLayer();

 if (mapDataLayer)

 {

 TSLMAFSimpleLayer* mapLayer = new TSLMAFSimpleLayer("Test Map", 2,

 mapDataLayer, false, false);

 m_uiObject->drawingSurface()->addDataLayer(mapLayer);

 m_mapLoaded = true;

 m_uiObject->drawingSurface()->drawingSurface()->reset();

 }

 Invalidate();

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 305 AUM1107

 Commercial in Confidence

Each Service within a Service Provider is responsible for deciding when it should be

available for the user depending on the state of the system (for example the Service

may ask “which is the UI object with focus?”, “what is the state of the UI object?”, or

“what is the state of a system variable?”). A Service may be available for user use, not

available but visible (typically greyed), or hidden.

All UI objects provided with MapLink, with the exception of the Internet Explorer

windows in the metadata and HTML UI objects, implement a context menu on the right

mouse button. Clicking the RMB in a window causes the framework to interrogate all

loaded Service Provider plug-ins to determine which Services are available. The

available Services are then displayed in the menu, and selection of a menu item will

cause the Service to be executed. Additionally, the task panel UI Object shows the set

of Services which can be executed at any moment in a standard fashion.

Users provide their own Services by deriving from TSLMAFClientCustomService:

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 306 AUM1107

 Commercial in Confidence

The Services must be managed by a Service Provider which the user must provide. The

Service Provider should wrap each service (e.g. the above HTMLService) in a

TSLMAFCustomService object.

In addition, because the Service Provider will be contained in a DLL, the DLL must

provide an exported function called getCustomServiceProvider which returns a pointer

to the client-derived provider class. The example below makes use of a basic Singleton

pattern to return a pointer to a single instance of the provider.

In order to decouple the resources that the Service Provider uses from the

implementation of the provider (e.g. names of menu items, etc.), the resources are

supplied via a configuration file which must be specified when constructing the Service

Provider (see the example below).

class HTMLService : public TSLMAFClientCustomService

{

public:

 virtual const char* name(); // This must return the class name which

// is also the name of the service

// in the resource file

 virtual TSLMAFIcon icon();

 virtual TSLMAFServiceAvailability serviceIsAvailable(

 TSLMAFUIObject* sourceUIObject, int dynamicCommandID);

 virtual bool executeService (TSLMAFUIObject* sourceUIObject,

 int dynamicCommandID);

private:

 TSLMAFIcon m_icon; // This will be displayed if an icon is needed.

};

TSLMAFIcon HTMLService::icon() { return m_icon; }

const char* HTMLService::name() { return “HTMLService”; }

TSLMAFServiceAvailability HTMLService::serviceIsAvailable(

 TSLMAFUIObject* sourceUIObject, int dynamicCommandID)

{

 // You could check the state of some variable and return a different

 // value depending on the state of the variable

 // Note: if this function is called from a context menu, then the

 // sourceUIObject will be the UI object in which the context menu

 // was activated.

 // Note: if this function is called from the task panel, sourceUIObject

 // will be 0

 // Only show the service in the task panel, not a context menu

 if (sourceUIObject)

 return TSLMAFServiceNotAvailableHidden;

 return TSLMAFServiceAvailable;

}

bool HTMLService::executeService(TSLMAFUIObject* sourceUIObject,

 int dynamicCommandID)

{

 // This function is called when the service is activated from

 // the task panel or a context menu, or by calling the

 // TSLServiceManager

 // Issue a notification which will be picked up by the HTML

 // UI object, displayed the specified URL

 TSLMAFShowHTMLXMLPageNotification* notice = new

 TSLMAFShowHTMLXMLPageNotification("www.envitia.com", "Envitia", true);

 TSLMAFPostOffice::postNotification(notice);

 return true;

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 307 AUM1107

 Commercial in Confidence

extern “C”

{

 TSLMAFCustomServiceProvider* getCustomServiceProvider();

}

class HTMLProvider : public TSLMAFClientCustomServiceProvider

{

public:

 HTMLProvider();

 virtual ~HTMLProvider();

 TSLMAFCustomServiceProvider* customServiceProvider()

 { return m_customProvider; }

 static HTMLProvider& instance() { return m_instance; }

 virtual int numServices();

 virtual TSLMAFCustomService* service(int nth);

private:

 TSLMAFCustomServiceProvider* m_customProvider;

 vector<TSLMAFCustomService*> m_services;

 static HTMLProvider m_instance;

 HTMLService m_htmlService;

 // Any other services ...

};

TSLMAFCustomServiceProvider* getCustomServiceProvider()

{

 return HTMLProvider::instance().customServiceProvider();

}

HTMLProvider HTMLProvider::m_instance;

HTMLProvider::HTMLProvider()

{

 m_services.push_back(new TSLMAFCustomService(&m_htmlService,

 “HTMLService”, false));

 // Add any other services ...

 m_customProvider = new TSLMAFCustomServiceProvider(this, “html.dat”,

 “HTMLProvider”, false);

}

HTMLProvider::~HTMLProvider()

{

 for (int i = 0; i < m_services.size(); ++i)

 delete m_services[i];

}

int HTMLProvider::numServices() { return m_services.size(); }

TSLMAFCustomService* HTMLProvider::service(int nth)

{

 if (nth < 0 || nth >= m_services.size())

 return 0;

 return m_services[nth];

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 308 AUM1107

 Commercial in Confidence

The data file containing the resource strings would be of the form

• MenuText The text that will be displayed in the menu

• Menu Services with the same Menu tag will be grouped together

• Submenu The menu item is created within a submenu with this text

• TaskText The text to display in the task panel UI object

• TaskDescription The text to describe the item in the task panel UI object

• TaskGroup Which group to place the item in the task panel UI object

An application can dynamically load a Service Provider library by calling

TSLMAFServiceManager::loadServiceProviderLibrary and passing in the path to the

service provider DLL.

Note that if using the task panel UI object, all service providers should be loaded at

system start-up.

C.2.4 MAF Editor Plug-in

This plug-in provides an editable drawing surface UI object. By default, all Editor SDK

operations are available. If you wish to include Spatial SDK operations, you will need to

add them in yourself (see below). Note also that the UI object only supports the

windows-style selection, and not the older selection mechanism.

The following illustrates its use:

[HTMLService]

MenuText=Envitia Website

Menu=URLS

Submenu=Favorites

TaskText=Envitia Website

TaskDescription=Navigate to the Envitia Website

TaskGroup=URLS

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 309 AUM1107

 Commercial in Confidence

C.3 Time SDK

The Time SDK provides a framework for managing time. It consists of a Time Server

which distributes time to interested Time Clients. The time is provided by a Timer

object. Whilst the SDK provides a default timer, the framework allows users to provide

their own implementation.

class EditableDrawingSurfaceView : public CView

{

public:

 virtual void OnInitialUpdate();

 afx_msg void OnPrimitivesPolyline() {

 TSLMAFSetEditModeNotification* notice = new

 TSLMAFSetEditModeNotification("polyline", 0);

 TSLMAFPostOffice::postNotification(notice);

 }

 // ...

private:

 TSLMAFEditableDrawingSurfaceUIObject* m_uiObject;

};

void EditableDrawingSurfaceView::OnInitialUpdate()

{

 CView::OnInitialUpdate();

 if (!m_uiObject) {

 m_uiObject = new TSLMAFEditableDrawingSurfaceUIObject;

 m_uiObject->create(...);

 m_uiObject->addStandardInteractionMode(...);

 m_uiObject->addEditInteractionMode(TSLMAFViewModeEdit, false, “editor.ini”,

 "editor", true);

 TSLEditor* theEditor = m_uiObject->editor();

 if (theEditor) {

 TSLAllLandLinkOperations::add(theEditor);

 theEditor->dataChanged();

 theEditor->reset();

 }

 TSLStandardDataLayer* editDL = new TSLStandardDataLayer;

 TSLMAFSimpleLayer* editLayer = new TSLMAFSimpleLayer("Edit Layer", 1,

 editDL, true, true);

 m_uiObject->drawingSurface()->addDataLayer(editLayer, true);

 m_uiObject->drawingSurface()->setDataLayerProps(editLayer->name(),

 TSLPropertyDetect, 1);

 m_uiObject->drawingSurface()->setDataLayerProps(editLayer->name(),

 TSLPropertySelect, 1);

 }

 MAFTestDoc* doc = GetDocument();

 TSLMapDataLayer* mapDataLayer = doc->getMapLayer();

 TSLMAFSimpleLayer* mapLayer = new TSLMAFSimpleLayer("Test Map", 2,

 mapDataLayer, false, false);

 m_uiObject->drawingSurface()->addDataLayer(mapLayer);

 m_uiObject->drawingSurface()->setDataLayerProps(mapLayer->name(),

 TSLPropertyDetect, 1);

 m_uiObject->drawingSurface()->drawingSurface()->reset();

 Invalidate();

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 310 AUM1107

 Commercial in Confidence

C.3.1 Library Usage and Configuration

As with the MapLink Core SDK, the Time SDK comes in 2 different flavours. It should be

noted that the library can be used in isolation from any other MapLink library. The table

below describes the preprocessor directives and link options that should be set in the

Project Properties for using the MapLink Time SDK. For X11 targets, refer to the product

Release Notes.

MapLinkTime.lib or MapLinkTime64.lib

Release mode, DLL version.
Uses Multithreaded DLL C++ run-time library

Add TTLDLL preprocessor directive,

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

MapLinkTimed.lib or MapLinkTime64d.lib

Debug mode, DLL version.
Uses Debug Multithreaded DLL C++ run-time
library.

Add TTLDLL preprocessor directive,

No redistributable run-time available.
KEYED: Development machines only.

C.3.2 Calibrating the Time Server

Prior to using the Time SDK, users may wish to calibrate the time server and its default

timer. Although the time server does not rely on calibration having been performed, by

calibrating the timer, users are guaranteed the best accuracy of time events. This is a

one-off process that needs be performed only once, for example when an application

that uses the Time SDK is installed on a client machine.

To calibrate the default timer, simply call TSLTimeServer::calibrate passing in a

duration and an optional progress callback. The minimum duration is 2 seconds. A

duration of 10 seconds is sufficient for a satisfactory calibration. However, the longer

the duration the lower the accumulated errors will be, with a value of 1 or 2 minutes

providing the best measure.

Users should store the value returned from this method locally on their system (either an

.ini file or the Windows Registry). Thereafter, this value should be passed to the timer’s

setCalibration method prior to starting the timer.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 311 AUM1107

 Commercial in Confidence

C.3.3 MapLink Time Classes

Figure 30 MapLink Time classes.

C.3.3.1 TSLTimeInstant

Time is represented by instances of the class TSLTimeInstant. This provides a number

of methods for adding/subtracting times and comparing times.

TSLTimeInstant stores the time internally as a 64-bit signed integer. On Windows

platforms, by default, this represents time in 100 ns increments from the epoch of

January 1, 1601 (UTC).

C.3.3.2 TSLTimeInterval

Differences between times are represented by the class TSLTimeInterval. Users can

also create TSLTimeInterval objects in a natural fashion by using the convenience

methods provided by TSLTimeHelper.

C.3.3.3 TSLTimeHelper

The class TSLTimeHelper defines an interface for creating and retrieving time, and for

manipulating time and time intervals. The MapLink Time SDK provides a default time

helper, accessed by calling TSLTimeServer::defaultTimeHelper.

TSLTimeHelper also provides convenience methods for converting between natural time

units and TSLTimeInterval. For example, timeHelper.seconds(25.0) creates a

TSLTimeInterval representing 25 seconds.

The primary function of TSLTimeHelper is to provide a concrete meaning for the raw

time value that is held internally inside TSLTimeInstant. By default, on Windows

platforms, this value represents time in 100 ns increments from the epoch of January 1,

1601 (UTC). By providing their own implementation of TSLTimeHelper, users can assign

their own meaning to time. This would be required if users create their own timers

which provide timing data at a different resolution to that of the Time SDK.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 312 AUM1107

 Commercial in Confidence

C.3.3.4 TSLTimer

The function of a timer is to provide time events which are distributed to registered

clients by the time server, TSLTimeServer. The class TSLTimer defines the interface

that timers are required to implement.

The timer object notifies the time server of a time event by calling the tick method of

TSLTimeServer passing it the new time.

When starting the timer, users can specify a time origin that is different to the current

time. This allows the timer to provide past or future times at every tick.

Timers should also be able to compress/expand time. This is set by calling the method

timeCompression.

The timer can be made to run time backwards by setting a negative time interval.

The default timer runs in its own separate thread. Where necessary, users will need to

ensure thread-safety of the tick method of any TSLTimeClient-derived classes.

C.3.3.5 TSLTimeServer

This is the actual Time Server object. It provides a time object to all registered clients at

intervals determined by the user.

By default, the Time Server uses its own default timer. If they wish, users can supply

their own timers. In this case, the server ignores its default timer and uses the timer

supplied by the user.

TSLTimeServer also provides a static calibrate method which performs a calibration of

the default timer.

C.3.3.6 TSLTimeClient

This defines an interface for receiving time notifications from a time server. The

interface provides automatic attaching and detaching to/from a time server. It

automatically handles tick events (through its update method) whilst allowing derived

classes to provide specialised responses by providing an implementation for the method

tick.

The tick occurs in the timer thread not the main thread. Therefore care must taken

when calling back into MapLink SDKs to ensure the access is thread safe.

C.3.3.7 TSLTimerListener

This represents an interface for notifying users of when the state of a timer changes and

also when a tick event is about to start and when the tick event has completed.

The call to notify of the start and completion of the tick event occurs in the timer thread

not the main thread. Therefore care must taken when calling back into MapLink SDKs to

ensure the access is thread safe.

Note: users are responsible for managing the lifetime of listener objects.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 313 AUM1107

 Commercial in Confidence

C.3.4 Sample Usage

C.3.4.1 Managing Time

In the following, we assume that timeHelper is the default time helper.

 TSLTimeUInt16 day (28);

 TSLTimeUInt16 month(3);

 TSLTimeUInt16 year (1973);

 TSLTimeUInt16 hour (12);

 TSLTimeUInt16 mins (13);

 TSLTimeUInt16 sec (29);

 TSLTimeUInt16 msec (437);

 TSLTimeInstant t0 = timeHelper.makeTime(day, month, year, hour,

 mins, sec, msec);

 day = 1;

 month = 4;

 year = 1973;

 hour = 9;

 mins = 36;

 sec = 8;

 msec = 0;

 TSLTimeInstant t1 = timeHelper.makeTime(day, month, year, hour,

 mins, sec, msec);

 TSLTimeInterval dt1 = t1 – t0;

 double dt1InHours = timeHelper.hours(dt1);

 TSLTimeInterval dt2 = timeHelper.seconds(15.5);

static

void printTime(TSLTimeHelper const& h, TSLTimeInstant const& time,

 bool local = false)

{

 TSLTimeUInt16 day, month, year, hour, mins, sec, msec;

 h.getDateTime(time, day, month, year, hour, mins, sec, msec,

 local);

 if (local)

 {

 cout << setfill('0') << "Local Time is ";

 }

 {

 cout << setfill('0') << " GMT Time is ";

 }

 cout << setw(2) << day << "/" << setw(2) << month << "/"

 << setw(4) << year << " " << setw(2) << hour << ":"

 << setw(2) << mins << ":" << setw(2) << sec << "."

 << setw(3) << msec << endl;

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 314 AUM1107

 Commercial in Confidence

C.3.4.2 Custom Time Clients

Here is a sample time client:

class Rover : public TSLTimeClient

{

public:

 Rover (TSLTimeUInt32 updateRate, TSLTimeServer* server, int id)

 : TSLTimeClient (updateRate, server),

 m_id (id)

 {

 }

 virtual ~Rover()

 {

 }

private:

 virtual bool tick(TSLTimeServer* s)

 {

 // ~~~

 cout << "Updating rover " << m_id << " at time... ";

 // ~~~

 printTime(s->timer().timeHelper(), m_time, true);

 static int ii = 0;

 if (++ii % 3 == 0)

 {

 return true;

 }

 return false;

 }

private:

 int m_id;

};

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 315 AUM1107

 Commercial in Confidence

C.3.4.3 Custom Timer Listener

Here is a sample timer listener:

class App : public TSLTimerListener

{

public:

 App() : m_stopped (false)

 { }

 virtual void onStart(TSLTimer* timer)

 {

 cout << " The timer was started at... ";

 printTime(timer->timeHelper(), timer->time(), true);

 m_stopped = false;

 }

 virtual void onStop(TSLTimer* timer)

 {

 cout << " The timer was stopped at... ";

 printTime(timer->timeHelper(), timer->time(), true);

 m_stopped = true;

 }

 virtual void onPause(TSLTimer* timer)

 {

 cout << " The timer was paused at... ";

 printTime(timer->timeHelper(), timer->time(), true);

 }

 virtual void onBeginTick(TSLTimer* timer)

 {

 }

 virtual void onEndTick(TSLTimer* timer, bool changed)

 {

 if (changed)

 { }

 else

 { }

 }

 void run(TSLTimer& timer) const

 {

 timer.start();

 while (!m_stopped)

 { }

 }

private:

 volatile bool m_stopped;

};

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 316 AUM1107

 Commercial in Confidence

C.3.4.4 Putting it all together

Here is a little program to exercise everything:

C.4 Database Interface SDK

The Database Interface (DBIF) SDK provides a simple yet flexible interface for storage

and retrieval of spatial entities from an Oracle database. Data is managed by collector

and donator objects from which users can derive their own implementation, should they

wish to provide custom data handling.

C.4.1 Library Usage and Configuration

Like many of the MapLink SDKs, the Database Interface SDK only comes in 2 flavours –

debug and release DLLs.

MapLinkDBIF.lib or MapLinkDBIF64.lib

Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Your application must also link the MapLink
CoreSDK library MapLink.lib/MapLink64.lib.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a

MapLinkDBIFd.lib or MapLinkDBIF64d.lib

Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Your application must also link the MapLink
CoreSDK library MapLinkd.lib/MapLink64d.lib.

No redistributable run-time available.

int main()

{

 TSLTimeServer server;

 TSLTimer& timer = server.timer();

 TSLTimeHelper const& timeHelper = timer.timeHelper();

 // Create a set of Rovers and add them to the server.

 Rover r1(1, &server, 1); // Update at every tick

 Rover r2(2, &server, 2); // Update every 2 ticks

 Rover r3(2, &server, 3); // Update every 2 ticks

 Rover r4(4, &server, 4); // Update every 4 ticks

 Rover r5(5, &server, 5); // Update every 5 ticks

 Rover r6(3, &server, 6); // Update every 3 ticks

 // Set the timer properties.

 timer.tickInterval(timeHelper.hertz(5)); // 5 ticks/sec

 timer.duration(timeHelper.minutes(3.0)); // Tick for 3 mins

 // Off we go...

 App app;

 TSLTimerListener* oldListener = timer.setListener(&app);

 // oldListener will be 0 since we have not set it before.

 app.run(timer);

 return 0;

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 317 AUM1107

 Commercial in Confidence

list of run-time dependencies when
redistributing.

Where X.Y is the version of MapLink you are
deploying.

KEYED : Development machines only.

DBIF is dependent upon Oracle OCI Client libraries version: 10gR2. The Oracle OCI

libraries will need to be obtained from Oracle for your platform.

C.4.2 How does it work?

Before a connection to a database can be established, a plug-in that handles the task of

communicating with the database must be loaded with a call to

TSLDBRegistry::loadPlugin. Currently only one plug-in, ttldbifsora, is supplied and

this plug-in handles communication with Oracle databases.

Once a plug-in is loaded, a connection can be established to the database by calling

TSLDBRegistry::createConnection(). Connection objects are managed by the registry

and will persist until either the program terminates or the plug-in which created the

connection is unloaded. A connection allows descriptions of the tables in the database to

be retrieved, as well as providing transaction management.

Once a connection has been established, a binding needs to be created between the

connection and a table or view in the database. This can be done by creating a new

TSLDBBinding object and invoking the bind method on it, passing in the previously

created connection as the parameter. For insertion and retrieval of certain types of data,

such as native geometry, a TMF BLOB with associated numeric extents or a list of 2D

points (X,Y) it is necessary to call setNativeGeometryColumn,

setBlobAndNumericExtentColumns, or setXYColumns respectively on the binding to

specify the names of the columns in the table that correspond to each piece of data.

Insertion, retrieval and updating of data are performed by a TSLDBEngine object, which

can be retrieved from a TSLDBBinding object. How the engine performs the operation

requested of it depends on how the collector or donator provided to it is configured.

C.4.3 Oracle Plugin Client Environment

The Oracle plugin assumes that the NLS_LANG environment parameter is setup to

specify locale behaviour for the Oracle software, specifically the character set.

See the Oracle Database Globalization Support Guide for further information.

If the NLS_LANG environment variable is not set, then the plugin sets up the OCI

environment, using the AL32UTF8 parameter, to use the UTF-8 character set.

C.4.4 Inserting data

Insertion of data into the database is handled by objects known as donators. Two types

of donators are provided with DBIF, TSLDBRowDonator and TSLDBEntityDonator.

The row donator provides a simple mechanism to insert both non-spatial and spatial data

into a table on a row-by-row basis. The data to be inserted should be encapsulated

inside TSLDBValue objects, which should then be added to a new TSLDBRow object which

http://docs.oracle.com/cd/B19306_01/server.102/b14225/ch3globenv.htm#g1028448

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 318 AUM1107

 Commercial in Confidence

represents a single row to be inserted. Any number of such rows can be added to the

row donator. To specify which columns in the table to insert data into, storeColumn on

the row donator object should be invoked once for each column that you want to add to

the table, passing in the name of the column. Note that the order of objects inside each

TSLDBRow should match the order of the columns in the table.

The entity donator allows for insertion of entities from inside a TSLStandardDataLayer

into the database. Specific entities can be selected from the data layer by passing a

user-derived implementation of the TSLSelector class to the donator’s constructor,

otherwise all entities in the layer will be inserted in order.

To perform the actual insertion, simply call insert on the TSLDBEngine object retrieved

from the appropriate binding, passing the donator as the parameter.

C.4.5 Retrieving data

Collectors are used to retrieve data from the database, and work in much the same way

as the donators. Two collectors are provided with DBIF, TSLDBRowCollector and

TSLDBEntityCollector. These correspond to the two donators.

To retrieve data using the row collector, simply specify which columns from the table you

wish to retrieve using the collectColumn method. To retrieve data using the entity

collector, simply create the collector.

Once the collector has been created, it can be populated with data from the table by

passing it as a parameter to the select method on the TSLDBEngine. For entity

collectors it is possible to filter the select based on their spatial extent by providing the

select method with an entity that defines a bounding box. When this is done, all entities

that are inside the bounding box will be returned.

Once the collector has been populated, the data can be examined. In the case of the row

collector, the collector will contain a number of TSLDBRow objects, each with a number of

TSLDBValue objects that correspond to each field selected in the table. This is the same

format as data is provided to the row collector. For the entity collector, the entities will

be inside a TSLStandardDataLayer held by the collector.

C.4.6 Updating data

Updating data works in much the same way as inserting data. The same collectors are

used, but instead of calling insert on the TSLDBEngine, update is called instead.

It is also necessary to specify key columns on the TSLDBBinding. These are used to form

the WHERE part of the update statement, and do not have to correspond to the key

columns in the table.

C.4.7 Custom Collectors and Donators

It is also possible to create your own collectors and donators. To do this, users should

derive and implement a class from one or more of the following:

• TSLDBEntityClientCustomCollector

• TSLDBEntityClientCustomDonator

• TSLDBRowClientCustomCollector

• TSLDBRowClientCustomDonator

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 319 AUM1107

 Commercial in Confidence

These custom collectors and donators can then be passed to the TSLDBEngine for use in

insertion, retrieval and updating of data in the database as normal.

C.5 Entity Store SDK

The Entity Store SDK provides a framework which allows users to store entities and their

attributes to a database during the construction and update of a MapLink seamless layer.

It also provides a facility to perform a bulk-import of a map into a database. The SDK

also allows clients to store entity references in a database.

C.5.1 Library Usage and Configuration

As with the MapLink Core SDK, the MapLink Entity Store SDK comes in 4 different

flavours. It should be noted that the library to be linked with should be determined by

the Core SDK library that you are using within your application. For example, if you are

using the Release mode, DLL version of the Core SDK (MapLink.lib/MapLink64.lib) then

you must use the equivalent Entity Store library (MapLinkEntityStore.lib/

MapLinkEntityStore64.lib). The Entity Store is dependent on the MapLink DBIF SDK.

The table below describes the preprocessor directives and link options that should be set

in the Project Properties for using the MapLink Entity Store SDK. For X11 targets, refer

to the product Release Notes.

MapLinkEntityStore.lib or
MapLinkEntityStore64.lib

Release mode, DLL version.
Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

MapLinkEntityStored.lib or
MapLinkEntityStore64d.lib

Debug mode, DLL version.
Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.
KEYED: Development machines only.

C.5.2 How does it work?

At the heart of the SDK is the TSLEntityDBStore object which is responsible for the

addition, removal and modification of entities in the database. Users can configure

which entities are stored in which tables via the TSLEntityDBTableMapping object. Each

mapping object corresponds to a single table in the database. The equivalent

TSLEntityRefDBTableMapping object is used when working with entity reference

objects.

The TSLEntityDBStore object uses a DBIF connection object to establish connectivity to

the database. Please refer to the earlier Database Interface SDK section (C.4) for more

information on how to create connection objects.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 320 AUM1107

 Commercial in Confidence

C.5.3 Storage of Entities

C.5.3.1 Configuring the Entity Table Mapping

The entity table mapping class, TSLEntityDBTableMapping, encapsulates the association

between table columns and entity attributes that are to be stored in the actual database

table. It also captures which feature types will be stored in the table. Each

TSLEntityDBTableMapping object corresponds to a single table in the database. Users

should associate an entity’s attribute with the column that is to store the data by calling

addColumn. If the entity’s geometry is to be stored, then the geometry column must be

defined by calling geometryColumn. By default, text entities will be ignored. This is

because their geometry is identical to that of point (TSLSymbol) objects. Some

databases do not have distinct geometrical types for representing text objects – for

these, type information will be lost for text objects. This means that retrieving the data

as a TSLText object is not possible. To allow text to be stored, call the method

allowText passing a value of ‘true’. In this case, it is advisable to exclude point feature

types. A better alternative is to store all text objects in a separate table. To facilitate

this, the table mapping provides the method restrictToText. When this method is

called, the table mapping will only allow TSLText objects to be stored in the associated

database table. (Note: restrictToText only has an effect if allowText has previously

been called with a ‘true’ parameter). By default, all features will be stored in the table.

To restrict the number of features whose data will be stored in the table, simply call

addFeature passing in the feature ID of interest. Alternatively, features may be

prevented from being added to the table by calling excludeFeature.

C.5.3.2 Bulk Import of a Map

Before storing change-only updates (COU), any existing entities that represent the base

mapping need to be imported into the data store. This is achieved by using the map

bulk import facility.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 321 AUM1107

 Commercial in Confidence

C.5.3.3 Storing Change-Only Updates (COU)

Once the base mapping entities have been imported into the data store, change-only

updates can be ingested into the system simply by passing an appropriately configured

TSLEntityStore object to the importData method of TSLSeamlessLayerManager.

C.5.4 Storage of Entity References

C.5.4.1 Configuring the Entity Reference Table Mapping

If entity reference objects are to be stored in the database, then the entity reference

table mapping class, TSLEntityRefDBTableMapping, encapsulates the association

between table columns and entity reference attributes that are to be stored in the actual

database table. Each TSLEntityRefDBTableMapping object corresponds to a single table

in the database. Because the amount of information that is stored by an entity reference

is small, the mapping object exposes the following methods for associating an entity

reference’s attributes with columns:

• toidColumn - The column that stores the entity TOID

• versionColumn - The column that stores the entity reference version

• sessionColumn - The column that stores the import session ID

• tileIDColumn - The column that stores the tile ID

The extent of the entity reference can be stored in one of two ways: either as a

geometry primitive or in four separate columns, one for each X, Y value of the bottom-

left and top-right corners.

TSLEntityStore dbStore(*m_connection);

// Add the tables to the store.

for (... all tables ...)

{

 dbStore.addTableMapping(table);

}

// ProgressListener is a client class derived from TSLSLMProgress

// and is used to provide feedback on progress during the import.

ProgressListener progress;

// Load the map.

TSLMapDataLayer* mapLayer = new TSLMapDataLayer();

mapLayer->loadData(...);

// Import the map that is loaded in ‘mapLayer’.

if (dbStore.importMap(mapLayer, &progress))

{

 dbStore.commit();

}

else

{

 dbStore.rollback();

}

mapLayer->destroy();

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 322 AUM1107

 Commercial in Confidence

To store the extent as a geometry primitive, simply call extentColumn passing in the

column name and the coordinate system of the geometry. Otherwise, call

extentColumns passing the column names that will store the bottom-left and top-right

X, Y values.

C.5.4.2 Bulk import of entity references

Before storing COU-related entity references, any existing references that represent the

base mapping need to be imported into the data store. This is achieved by using the

reference bulk import facility.

C.5.4.3 Storing COU-related Entity References

Once the base mapping references have been imported into the data store, COU-related

references can be ingested into the system simply by associating an appropriately

configured TSLEntityRefDBHandler object with a custom client entity reference handler

and passing the client handler to the TSLSeamlessLayerManager before importing the

data.

 TSLSLMEntityRefDBHandler dbHandler(*m_connection);

// Add the tables to the store.

for (... all tables ...)

{

 dbHandler.addTableMapping(table);

}

// ProgressListener is a client class derived from TSLSLMProgress

// and is used to provide feedback on progress during the import.

ProgressListener progress;

// Load the map.

TSLMapDataLayer* mapLayer = new TSLMapDataLayer();

mapLayer->loadData(...);

// Import the map that is loaded in ‘mapLayer’.

if (!dbHandler.importReferences(mapLayer, &progress))

{

 dbHandler.commit();

}

else

{

 dbHandler.rollback();

}

mapLayer->destroy();

TSLSLMEntityRefHandlerCustom* handler = new

TSLSLMEntityRefHandlerCustom;

Handler->setClientEntityRefHandler(dbHandler);

m_slmManager->entityRefHandler(handler);

// Import the data.

m_slmManager->importData(...);

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 323 AUM1107

 Commercial in Confidence

C.6 Impact Assessment SDK

This SDK provides the ability to test the impact of many islands within an Island Set on

your entity data stored in either a database table or a user-defined storage facility. After

querying the entities from the store, the Impact Assessor SDK performs the assessment

and reports back the type of impact the group of islands has on the entity.

C.6.1 Library Usage and Configuration

Unlike many of the MapLink SDKs, the Impact Assessment SDK only comes in 2 flavours

– debug and release DLLs.

MapLinkImpactAss.lib or
MapLinkImpactAss64.lib

Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Your application must also link the MapLink
CoreSDK library MapLink.lib/MapLink64.lib.

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.

Where X.Y is the version of MapLink you are
deploying.

MapLinkImpactAssd.lib or
MapLinkImpactAss64d.lib

 Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

Your application must also link the MapLink
CoreSDK library MapLinkd.lib/MapLink64d.lib.

No redistributable run-time available.

KEYED : Development machines only.

C.6.2 Impact types

The type of impact can fall into one of three categories, each identified by their

respective enumeration.

The diagrams below show what each enumeration represents. The red square represents

an island consisting of 3 contiguous polygons and a line, and the blue triangle is the

entity under test.

• Not Impacted [the entity lies completely outside of the island]

• Not Impacted but contained within [the entity lies completely within the

island, but will not be affected by the entities in the island since it does not

intersect with a) a ring of the polygon, or b) any another entity]

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 324 AUM1107

 Commercial in Confidence

• Impacted [the entity intersects with a) a ring of the polygon, or b) any

other entity]

C.6.3 Assessment

The Impact Assessor will issue a spatial query, giving the extent of the island set. The

items returned by the spatial query will be examined, and an assessment made of each

of the entities returned.

The Assessor will notify you with the assessment of each entity.

• If one entity is returned, you will be notified of the assessment for the

entity.

• If an entity set is returned, you will notified of a) the assessment of each

entity (entity sets excepted), and b) the overall assessment for the entire

entity set. The overall assessment will be most-impacted value of any of

the entities within the entity set.

C.6.4 Usage

To use the Impact Assessor SDK it is first necessary to derive your own class from

TSLImpactAssessorEntitySink and override the one pure virtual function this contains.

You must pass an instance of your class to the Assessor, which will call your override for

each assessment that occurs.

Data may be fed to the Impact Assessor SDK in one of two ways. First, data may be

retrieved using the Database Interface SDK. In this case, the TSLImpactAssessor should

be instantiated using the constructor that takes a configured TSLDBEngine and

TSLDBRowCollector. The TSLImpactAssessorEntitySink virtual function will be invoked

for each row read from the database. You are also given the row of data that the entity

originated from, to allow you to associate the Impact Assessment with one or more key

values in the row.

Below is an example of how a derived class could be implemented, using the Database

Interface SDK approach. The example below stores all entities into respective entity sets

depending on each entities type of impact.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 325 AUM1107

 Commercial in Confidence

For this use, the Impact Assessor requires a valid TSLDBEngine and

TSLCoordinateSystem to be passed into its constructor. The Impact Assessor will use

the engine, which is bound to a particular schema and table and understands where and

how the geometry is stored, to query geometry from the database. Each time a row is

read by the engine, an assessment of the entity is made and you will be notified of the

assessment.

The code example below demonstrates how to setup and perform the impact

assessment.

class ImpactAssessorEntitySink : public TSLImpactAssessorEntitySink

{

public:

 TSLEntitySet* m_notImpacted;

 TSLEntitySet* m_notImpactedContainedWithin;

 TSLEntitySet* m_impacted;

 ImpactAssessorEntitySink()

 {

 m_notImpacted = TSLEntitySet::create();

 m_notImpactedContainedWithin = TSLEntitySet::create();

 m_impacted = TSLEntitySet::create();

 }

 ~ImpactAssessorEntitySink()

 {

 // Destroy the entity sets

 }

 virtual bool notifyImpactedEntity(const TSLEntity* entity,

 const TSLImpactDescription* descriptionOfImpact,

 const TSLDBRow* row)

 {

 if (!row || !descriptionOfImpact || !entity)

 return false;

 // Assumes that there is only 1 entity in the description.

 // There may be more.

 const TSLEntityImpactDescription* entDesc =

 descriptionOfImpact->entityImpacted(0);

 TSLImpactEnum impact = entDesc->impact();

 if (impact == TSLImpactNotImpacted)

 {

 notImpacted->insert(entDesc->entity());

 }

 else if (impact == TSLImpactNotImpactedContained)

 {

 notImpactedContainedWithin->insert(entDesc->entity());

 }

 else if (impact == TSLImpactImpacted)

 {

 impacted->insert(entDesc->entity());

 }

 return true;

 }

};

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 326 AUM1107

 Commercial in Confidence

Alternatively, you can derive your own class from TSLImpactAssessorDataRetriever

and override the pure virtual function. In this case the TSLImpactAssessor should be

instantiated using the alternate constructor, and passed a pointer to this

implementation. Each time data is required for an assessment of an island to be made,

this callback will be invoked with a polygon representing the boundary for which data is

needed. You should populate the provided TSLEntitySet with the data in this area

retrieved from your data store. Note that when using this approach the row parameter to

the TSLImpactAssessorEntitySink callback will always be NULL.

C.7 Accelerator SDK

The Accelerator SDK was designed to allow very fast rotation of raster maps and data.

This is achieved by using either TSLWGLAcceleratedSurface (OpenGL 1.4 or newer),

// Get engine and BNG coordinate system

TSLCoordinateSystem::loadCoordinateSystems();

const TSLCoordinateSystem* templateSystem = TSLCoordinateSystem::findByID

 (-410);

// Clone coordinate system to allow TMC per MU to be set,

// ensuring that the ID of the new coordinate system is the –ve

// of the template system

TSLCoordinateSystem* coordSys = 0;

if (templateSystem)

{

 coordSys = templateSystem->clone(410);

 if (coordSys)

 bng->setTMCperMU(1000);

}

// Create the engine and binding

TSLDBBinding* binding = new TSLDBBinding(mySchemaName.c_str(),

 myTableName.c_str());

TSLDBEngine* engine = binding->engine();

// Create impact assessor and entity sink

TSLImpactAssessor* impactAsessor = new TSLImpactAssessor(engine, coordSys);

ImpactAssessorEntitySink* entitySink = new ImpactAssessorEntitySink();

// Create Islands

TSLStandardDataLayer* sdl = new TSLStandardDataLayer();

if (!sdl->loadData(m_islandsFilename.c_str()))

{ // Clean up

 return false;

}

TSLIslandSet* islandSet = new TSLIslandSet;

TSLSLMEntityRefHandlerFile* refHandler = new TSLSLMEntityRefHandlerFile;

if (!TSLIsland::createIslands(sdl, myMapFilename.c_str(), *refHandler,

 *islandSet)))

{ // Clean up

 return false;

}

// Perform impact assessment

if (!impactAssessor->performAssessment(islandSet, entitySink))

{ // Clean up

 return false;

}

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 327 AUM1107

 Commercial in Confidence

TSLDXAcceleratorSurface (DirectX 9c) or TSLX11GLAcceleratedSurface (Please see

below).

The Accelerator works by rendering the double buffered layers as tiles which are drawn

as textures on the display. The tiles can either be drawn in the foreground thread or a

background thread.

The OpenGL and DirectX surfaces are feature compatible.

You cannot mix OpenGL and DirectX rendering in the same application.

There are four documented samples which demonstrate how to use this SDK. One of the

samples shows how to use the OpenGL Accelerator Surface with Qt.

C.7.1 Library Usage and Configuration

There are 4 different configurations for the accelerator SDK; two for OpenGL and two for

DirectX.

Note: The 64-bit version of the DirectX is built against the March 2009 '9c' version of

the SDK.

MapLinkAccelerator64.lib
OpenGL Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink CoreSDK library
MapLink64.lib

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.
Where X.Y is the version of MapLink you are
deploying.

MapLinkAccelerator64d.lib
OpenGL Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.
Must also link the MapLink CoreSDK library
MapLink64d.lib
KEYED: Development machines only.

MapLinkDXAccelerator64.lib

DirectX Release mode, DLL version.

Uses Multithreaded DLL C++ run-time library.

Requires TTLDLL preprocessor directive.

Must also link the MapLink CoreSDK library
MapLink64.lib

Refer to the document "MapLink Pro X.Y:
Deployment of End User Applications" for a
list of run-time dependencies when
redistributing.

Where X.Y is the version of MapLink you are
deploying.

MapLinkDXAccelerator64d.lib

DirectX Debug mode, DLL version.

Uses Debug Multithreaded DLL C++ run-time
library.

Requires TTLDLL preprocessor directive.

No redistributable run-time available.

Must also link the MapLink CoreSDK library
MapLink64d.lib

KEYED: Development machines only.

C.7.2 Threading

The Accelerator Drawing Surfaces uses a background thread for rendering of the layers.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 328 AUM1107

 Commercial in Confidence

As such you should review the contents of section 30, in particular sections 30.5.4,

30.5.6 and 30.9.

C.7.3 Floating Point

The DirectX version requires the floating point processor to be setup as follows:

C.7.4 Graphics Cards

C.7.4.1 Windows

The Surface supports mixing of GDI drawing and OpenGL/DirectX drawing.

GDI is used to draw layers which are un-buffered and OpenGL/DirectX is used to draw

tiles for buffered layers.

With the OpenGL Accelerated Surface GDI rendering is not quite correct for patterned

fills and with the zoom box with the Interaction modes. This is because GDI does not

support Alpha drawing.

ATI graphics cards do not currently mix GDI and DirectX graphics drawing correctly on

all cards. Envitia are monitoring the status as each new driver is released.

INTEL and NVIDIA graphic drivers do not appear to be affected.

C.7.4.2 X11

The minimum requirements for this surface to work on X11 are:

• OpenGL version 1.1

• GLX version 1.3 and ideally extension GLX_EXT_texture_from_pixmap

• X-Server supporting 24 bit Visual and 32 bit pixmaps.

The Surface supports mixing of Xlib drawing and OpenGL drawing.

Xlib is used to draw layers which are un-buffered and OpenGL is used to draw tiles for

buffered layers.

C.7.5 Walkthrough 6 - Your First MapLink Accelerator SDK Application

This walkthrough is based on the previously detailed MapLink walkthroughs, assuming a

minimal GUI, with Zoom/Pan/Grab capability. The ‘X’ and ‘Z’ keys rotate the map,

clockwise and counter-clockwise respectively.

C.7.5.1 Managing the Document

As at section 8.5, create a map data layer. Clear the error-stack, load the map and

check for errors. Additionally, create an accelerated custom data layer and client.

_controlfp_s(0, _CW_DEFAULT, MCW_PC | MCW_RC | MCW_IC | MCW_EM);

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 329 AUM1107

 Commercial in Confidence

Display any errors that have occurred. Of course, you should also destroy the data layers

when finished with.

C.7.5.2 Managing the View

Create an OnInitialUpdate handler and in this method perform the following:

C.7.5.3 Create the Drawing Surface

This should be an instance of a derived TSLAcceleratedSurface. Accelerated Drawing

Surfaces have been designed to allow rotation of raster data using either OpenGL or

DirectX. This is achieved by rendering the buffered data layer information into tiles. The

tiles are then converted into textures and drawn using either OpenGL or DirectX.

Note:

• There is no need to use a Multi-threaded loader with this surface as map

loading occurs in the background render thread.

• Runtime projection of the maps are not currently supported.

• Dynamic Arc projection is supported.

• The Surface is always double buffered.

• When using a TSLWMSDataLayer with the accelerated surface, ensure the

setSynchronousLoading method has been called with the

synchronousLoading parameter set to true.

Enable dynamic arc map support:

Enabling double buffering for layers or drawing surfaces does not make sense for

this surface. The buffering setting of the layers is used to identify which layers

are drawn into the map texture and which are drawn onto the Surface.

m_customDataLayer = new TSLAcceleratedCustomDataLayer;

m_customClient = new AcceleratedSampleCustomDataLayer;

m_customDataLayer->setClientCustomDataLayer(

 (TSLAcceleratedClientCustomDataLayer*)m_customClient);

 if (m_mapDataLayer)

 {

 m_mapDataLayer->destroy();

 }

 if (m_customDataLayer)

 {

 m_customDataLayer->destroy();

 }

 if (m_customClient)

 {

 delete m_customClient;

 }

 m_mapDataLayer = NULL;

 m_customDataLayer = NULL;

 m_customClient = NULL;

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 330 AUM1107

 Commercial in Confidence

C.7.5.4 Create an instance of a derived TSLAcceleratedRenderControl

This class is responsible for drawing the tile specified. Add this instance to the derived

Accelerated Surface.

Using a Multi-threaded render control:

Request that the texture map tiles are loaded onto the card in the background

thread. This setting can be experimented with.

We also want a callback to occur once all the tiles have been loaded so that we

can redraw the screen.

Using a Blocking Render Control:

Use a TSLAcceleratedBlockingRenderControl. This particular render control

blocks while each tile is rendered.

Add the render control to the surface. This will create an Accelerated Renderer to

draw the map tiles.

C.7.5.5 Tile configuration and Quality Settings

This should be done before any layers are added. If you do change the settings you

should cause the display to be redrawn.

The values defined here are the defaults.

It may be required to change the defaults to tune for the displayed window size and the

graphics card.

The settings are held in a TSLAcceleratorConfiguration. This structure allows the user

to configure the Accelerated Surface tile strategy, OpenGL/DirectX texture filtering and

drawing options.

Tile Size and Number:

Size of tile in pixels (32, 64, 128, 256, 512, 1024 etc...)

 m_drawingSurface = new TSLWGLAcceleratedSurface((void*)m_hWnd, false);

 m_drawingSurface->setOption(TSLOptionDynamicArcSupportEnabled, true);

 if (m_useThreadedRenderer)

 {

 m_mtRenderControl = new TSLAcceleratedMTRenderControl(

 false, false, redrawCallback, this);

 m_drawingSurface->addRenderControl(m_mtRenderControl);

 m_drawingSurface->setOption(TSLOptionAcceleratorZoomAsynchronous,

 false);

 }

 else

 {

 m_blockingRenderControl =

 new TSLAcceleratedBlockingRenderControl(redrawCallback, this);

 m_drawingSurface->addRenderControl(m_blockingRenderControl);

 }

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 331 AUM1107

 Commercial in Confidence

A tile pixel size of 512 is used in the sample. If you have a WMS layer attached

then you should ensure that this size matches the WMS tile size.

If we are rotating the surface we need to consider how many tiles are possibly

needed to draw the bounding box around the circle scribed by the view area

being rotated.

In addition, panning requirements may also affect the number of tiles required.

The following settings are hints that control the maximum number of tiles that

will be held before old tiles are removed.

However, if the values are too small to be able to draw the rotated surface the

maximum will be increased temporarily. This may affect the pan performance of a

rotated surface, as tiles just outside the required extent will be removed from the

tile cache too early.

Calling TSLAcceleratedSurface::getConfiguration will return the number of

tiles currently being used if this is greater than the number requested.

The number of tiles in the X axis, in the Windows NT sample, is 10.

The number of tiles in the Y axis, in the Windows NT sample, is 10.

Texture Filter Setting:

The texture tiles are filtered by default with GL_NEAREST filter setting. The other

possibility is GL_LINEAR.

GL_NEAREST is usually the best setting for performance, but may affect the

display of fine detail maps (usually if the pixel mapping is not one to one).

GL_LINEAR is usually the best for display of fine detail maps, but may be slower.

The performance of the graphics hardware will affect the filter setting you wish to

use.

Note:

DirectX implementation does not currently support changing the texture filter

setting.

Texture Border Setting:

Allows the user to specify if a map tile has a border. The default is NOT to have a

texture border. A texture border is supported by drawing a part of the

surrounding map on the edge of the tile. They are very useful when the filter is

set to GL_LINEAR as this filter will use the border as a sample.

If you decide not to turn on texture borders then it is possible that the tile

boundaries will be visible as a faint blank line when linear filtering is used

(depends on Graphics Card).

Note:

 const int tilePixelSize = 512;

 m_configuration.tileSize(tilePixelSize);

 m_configuration.numberTilesX(10);

 m_configuration.numberTilesY(10);

 m_configuration.textureFilterNearest(true);

 m_configuration.textureBorder(false);

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 332 AUM1107

 Commercial in Confidence

Depending on the size of the texture tile there may be a slight misalignment

when borders are turned on. The DirectX implementation does not support a

texture border.

Dynamic Arc Tile Tolerance:

This is specified as a percentage of the tile width. The scaling in the x-axis

changes with latitude when Dynamic Arc is turned on.

If we have a dynamic arc map, the x-axis extent changes as you move north and

south. This causes the cached map tiles to be thrown away too often. The

tolerance setting allows us to specify how much change in the x-axis extent we

want to tolerate before redrawing the map tiles.

If the tile cache is flushed too often then the performance will be adversely

affected.

View Expansion:

This allows us to configure the pre-loading of map tiles, by specifying a

percentage of the current extent to look ahead by.

The value used will be dependent on the max' pan rate you wish to support and

the effect on performance by rendering more tiles (adjust numberTiles* as well).

The value passed to this method affects how much the view is expanded. The

expansion is always square. Rotating the view will also affect the view area taken

into account.

If the expansion percent will affect the amount of time it takes to display after a

zoom or large pan as the number of tiles requested will vary depending on the

expansion set.

Additionally ensure that the numberTilesX and numberTilesY takes account of

the set expansion.

Note:

There is a trade off between tile size and speed of display of the tiles. If you

make the tile size too small then the time taken to display all the tiles becomes

greater and will probably impact upon the frame rate you can achieve. The value

used should be tuned for your map, drawing area and graphics card. The drawing

of the tiles occurs in the background thread, so the number of tiles generated is

less important. It is the actual time to display the tiles once they have been

generated that needs to be considered.

Immediate Draw:

This option provides additional control that stops all drawing from blocking. This

is usefull when you have a Dynamic Arc map where a pan may invalidate the

current set of tiles.

Keep Map Tiles Until Replaced:

This option controls when the Surface replaces the current set of tiles it has. This

is particularly usefull when zooming as the screen would normally go blank when

zoom does not block.

Add the TSLAcceleratorConfiguration structure to the Drawing Surface.

 m_configuration.dynamicArcTolerance(10.0);

 m_configuration.viewExpansion(12.5);

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 333 AUM1107

 Commercial in Confidence

Obtain the drawing area size and resize the drawing surface to match the window.

C.7.5.6 Add the Map to the specified Drawing Surface

C.7.5.7 Add the Custom Layer to the specified Drawing Surface

Note:

• Layers will only be added to the background renderer if the

TSLPropertyBuffered flag is set to true.

• Dynamic Data Object layers and Custom Data layers not designed for this

surface will defeat the object of the Accelerated Surface by forcing a

redraw every frame if added to the Background renderer.

• Both the OpenGL and DirectX Accelerated Surfaces support mixing of

native rendering and the use of OpenGL/DirectX. This means that layers

which are un-buffered will be drawn directly to the Surface. There is a

performance hit with this approach however if the amount drawn is

managed for the Graphics and CPU hardware the actual performance hit

can be kept to a manageable amount.

See the documentation for class TSLAcceleratedSurface for additional information.

C.7.5.8 Define and implement the Interaction model

This interaction model is built on the model used in the first Walkthrough sample but

with the additions of buttons to control rotation. Details of the Pan, Zoom and Grab

features can be found in section 6, Walkthrough 2.

The 'X' key is used to rotate the map clockwise. The 'Z' key is used to rotate the map

counter-clockwise.

Create and setup a timer for handling the screen update on keyboard input. Add this to

the View OnInitialUpdate function.

Add handlers for the Key Up and Key Down events.

 m_drawingSurface->setConfiguration(m_configuration);

 if (!m_mapDataLayer || !m_customDataLayer)

 return false;

 // Add the map to the specified drawing surface.

 surface->addDataLayer(m_mapDataLayer, m_mapLayerName) ;

 surface->setDataLayerProps(m_mapLayerName, TSLPropertyBuffered, true);

 // Add the custom layer to the specified drawing surface.

 // This type of layer will never be added to the background renderer.

 surface->addDataLayer(m_customDataLayer, m_customLayerName) ;

 return true;

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 334 AUM1107

 Commercial in Confidence

In the timer event handler, add code to process the rotation.

C.7.6 Using the Accelerator with the WMS

Synchronous loading should always be set when being used with the accelerator:

The biggest performance killer is requesting data from the WMS, so this should be

minimised as much as possible by maximising tile size. However, the tile size should be

consistent on both the WMS and Accelerated Surface, as the WMS layer knows when it is

added to an Accelerated Surface and adjusts its tile requests accordingly:

Do NOT call notifyChanged() at any point on the TSLWMSDataLayer when being used

with the accelerator, as this clears all the cached tiles.

C.7.7 Integrating Applications using OpenGL or DirectX

The DirectX and OpenGL surfaces provide a mechanism to pass through the necessary

device context from an application. This allows a users application to draw both before

and after the surface.

The approach is the same for both DirectX and OpenGL as such only the OpenGL version

is shown below.

The OpenGL Accelerated Surface (Windows & X11) allows the user to pass in an OpenGL

context. This can be achieved on Windows as follows:

 m_hdc = ::GetDC(m_hWnd);

 CView::OnTimer(nIDEvent);

 if (m_drawingSurface && m_mapLoaded)

 {

 double rotate = 0.0;

 if (m_zPressed)

 {

 rotate += 2.0;

 }

 if (m_xPressed)

 {

 rotate -= 2.0;

 }

 if (rotate != 0.0)

 {

 // rotate the drawing surface (no redraw)

 m_rotate += rotate;

 m_drawingSurface->rotate(m_rotate * DEGREES_2_RAD);

 m_drawingSurface->redraw();

 }

 }

m_wmsDataLayer->setSynchronousLoading(true);

m_wmsDataLayer->setDefaultTileLoadSize(1024, 1024);

m_configuration.tileSize(1024);

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 335 AUM1107

 Commercial in Confidence

 static PIXELFORMATDESCRIPTOR bit32pfd =

 {

 sizeof(PIXELFORMATDESCRIPTOR),// size of this pfd

 1, // version number

 PFD_DRAW_TO_WINDOW | // support window

 PFD_SUPPORT_OPENGL |

 PFD_DOUBLEBUFFER, // double buffered

 PFD_TYPE_RGBA, // RGBA type

 16, // 24-bit color depth

 0, 0, 0, 0, 0, 0, // color bits ignored

 0, // no alpha buffer

 0, // shift bit ignored

 0, // no accumulation buffer

 0, 0, 0, 0, // accum bits ignored

 32, // 32-bit z-buffer

 0, // no stencil buffer

 0, // no auxiliary buffer

 PFD_MAIN_PLANE, // main layer

 0, // reserved

 0, 0, 0 // layer masks ignored

 };

 // OpenGL rendering context creation

 PIXELFORMATDESCRIPTOR pfd;

 bit32pfd.dwFlags = PFD_SUPPORT_OPENGL;

 int pixelformat = ChoosePixelFormat(m_hdc, &bit32pfd);

 DescribePixelFormat(m_hdc, pixelformat,

 sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 SetPixelFormat(m_hdc, pixelformat, &pfd) ;

 HGLRC context = wglCreateContext(m_hdc);

 m_drawingSurface = new TSLWGLAcceleratedSurface(m_hWnd, false,

 &context);

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 336 AUM1107

 Commercial in Confidence

The approach to drawing becomes a little bit more complex however the following will

allow pre and post rendering.

void AcceleratedSampleView::OnDraw(CDC* pDC)

{

 static FrameRate frameRate;

 if (m_drawingSurface)

 {

 CRect rect ;

 GetClientRect(&rect) ;

 int w = rect.Width();

 int h = rect.Height();

 {

 //////////////////////////////////////

 // Pre-draw

 /////////////////////////////////////

 glDrawBuffer(GL_BACK); // Set the buffer to draw too.

 glClearColor(1.0, 1.0, 1.0, 0.0);// Clear the buffer.

 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION); // Projection Matrix.

 glPushMatrix(); // Save what's on the stack

 glLoadIdentity(); // Load an identity matrix

 glOrtho(0,w,0,h,-1, 1); // Create a 2D orthographic

 // projection

 glMatrixMode(GL_MODELVIEW); // Setup the model matrix

 glPushMatrix();

 glLoadIdentity();

 glPushAttrib(GL_COLOR_MATERIAL); // Save the attributes

 glEnable(GL_COLOR_MATERIAL); // Enable and disable the OpenGL

 // states as required.

 glDisable(GL_DEPTH_TEST);

 // setup colour and positions.

 glColor3f(1.0f,0.0f,0.0f);

 glTranslatef(0.0f,0.0f,-1.0f);

 glRasterPos2f(20, 20);

 // the following just draws some text using OpenGL.

 float fps = frameRate.getFPS();

 m_glFont->glPrint("Pre Render %f", fps);

 // Reset the OpenGL state.

 glEnable(GL_DEPTH_TEST);

 glMatrixMode(GL_PROJECTION);

 glPopMatrix();

 glMatrixMode(GL_MODELVIEW);

 glPopMatrix();

 glPopAttrib();

 }

 //////////////////////////////////////

 // Draw using MapLink Pro

 //////////////////////////////////////

 // We pass false to the clear flag as we have already cleared

 // the back buffer.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 337 AUM1107

 Commercial in Confidence

 m_drawingSurface->drawDU(rect.left, rect.bottom, rect.right, rect.top,

 false) ;

 {

 //////////////////////////////////////

 // Post Draw.

 //////////////////////////////////////

 glMatrixMode(GL_PROJECTION);

 glPushMatrix();

 glLoadIdentity();

 glOrtho(0,w,0,h,-1, 1);

 glMatrixMode(GL_MODELVIEW);

 glPushMatrix();

 glLoadIdentity();

 glPushAttrib(GL_COLOR_MATERIAL);

 glEnable(GL_COLOR_MATERIAL);

 glDisable(GL_DEPTH_TEST);

 glColor3f(1.0f,0.0f,0.0f);

 glTranslatef(0.0f,0.0f,-1.0f);

 glRasterPos2f(20, 20);

 float fps = frameRate.getFPS();

 m_glFont->glPrint("FPS %3.2f", fps);

 glEnable(GL_DEPTH_TEST);

 glMatrixMode(GL_PROJECTION);

 glPopMatrix();

 glMatrixMode(GL_MODELVIEW);

 glPopMatrix();

 glPopAttrib();

 }

 wglSwapLayerBuffers(m_hdc, WGL_SWAP_MAIN_PLANE); // Swap the buffers

 frameRate.updateTime();

 }

}

Internally we assume we have full control of the OpenGL state so the state should be

maintained.

The viewport, projection and model matrix are set by us. If you wish to preserve

the matrices do a push of each matrix before calling drawDU and a pop afterwards.

The viewport will need to be setup by your code as we will use the parameters

passed by wndResize (this allows you to limit the area we draw into).

The map tiles are textures. The tiles will extend beyond the map area.

C.7.8 Custom Data-layer

The Accelerated custom data-layer is different from the standard ones as it has been

designed to allow rendering by OpenGL or DirectX (depending on the Surface setup).

It is very important that the Graphics drawing state is maintained so that on exit of

drawLayer method we can resume drawing with the state as it was originally set on

entry.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 338 AUM1107

 Commercial in Confidence

C.7.9 Layer Drawing Order

It is possible to draw using any 2D layer with the Accelerator SDK (as long as you do not

mix drawing technologies12). This includes the Dynamic Data Object Layer

(TSLObjectDataLayer) and the Custom Data Layer (TSLCustomDataLayer).

Layers which contain dynamic data should be set as single buffered (setDataLayerProps

- TSLPropertyBuffered set to false).

Single Buffered (un-buffered) layers are drawn in the foreground thread of the

Accelerated Surface.

Double Buffered (buffered) layers are drawn in the background thread of the Accelerated

Surface.

The background thread draws the layers in a north-up aspect. The layers are split into

fixed size tiles (as specified by the TSLAcceleratorConfiguration). These tiles are
cached as textures. This is where the speed comes from when panning and

rotating as we will only create new tiles for the areas that are required.

Layer drawing occurs like this:

• Un-buffered layers are grouped and drawn on first buffered layer seen.

• Buffered layers are then drawn as a group.

• If there are any un-buffered layers left they are drawn at this point.

Accelerated layers are drawn when they are first seen. They will cause any un-buffered

layers to be drawn that have been found up to that point, so for example

The Sample adds the following layers:

1. Standard Data Layer, Single Buffered

2. Map Data Layer, Double Buffered

3. Accelerator Custom Layer, Single Buffered (can't be double buffered)

4. Standard Data Layer, Single buffered

5. Raster Data Layer, Double buffered.

We will therefore draw as follows for this example:

A. Single Buffered: Standard Data Layer (1)

B. Double Buffered: Map Data Layer (2) and Raster Data Layer (5)

C. Single Buffered: Custom Data Layer (3)

D. Single Buffered: Standard Data Layer (5)

There will be stalls in the processing at A and D as we have to draw using GDI/X11

and upload the resulting texture for drawing using OpenGL/DirectX.

The DirectX Surface takes a slightly different approach at present that can cause

longer stalls at A and D. The drawing of GDI however better matches the

TSLNTSurface drawing for patterned fills in this case.

12 You cannot mix OpenGL and DirectX in the same application. This means that you cannot mix
Direct2D and OpenGL. Direct2D uses DirectX 10 at the time of writing and there may be issues
with using two versions of DirectX.

Commercial in Confidence

 Deprecated SDKs

© 2021 Envitia Ltd 339 AUM1107

 Commercial in Confidence

For performance you should group your single buffered layers together without double

buffered layers or Accelerated Custom Layers in-between as this will cause a drawing

switch to occur. So a better setup would be as follows:

1. Map Data Layer, Double Buffered

2. Raster Data Layer, Double buffered.

3. Accelerator Custom Layer, Single Buffered (can't be double buffered)

4. Standard Data Layer, Single Buffered

5. Standard Data Layer, Single buffered

As this reduces the number.

